Skip to main content
Log in

Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Grapevine (Vitis vinifera) is the most widely cultivated and economically important fruit crop, but is susceptible to a large number of diseases. Downy mildew, caused by the obligate biotrophic oomycete pathogen Plasmopara viticola, is a common disease present in all regions where vines are cultivated. We used suppression subtractive hybridization (SSH) to generate two cDNA libraries enriched for transcripts induced and repressed, respectively, in the susceptible grapevine cultivar Chasselas 24 h after inoculation with P. viticola. Differential screening on glass slide microarrays yielded over 800 putative genes that were up-regulated in response to P. viticola infection and over 200 that were down-regulated. One hundred and ninety four of these, were sequenced, identified and functionally categorised. Transcript abundance of twelve genes over a 48 h time course was examined by reverse transcriptase quantitative real-time PCR (RT-qPCR). Ten of these genes were induced/enhanced by P. viticola challenge, confirming the results of the SSH. The vast majority of the genes identified are related to defence. Interestingly, many genes involved in photosynthesis were down-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252, 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  • Allegre, M., Daire, X., Heloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., et al. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. The New Phytologist, 173, 832–840.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bezier, A., Lambert, B., et al. (2003). Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 16, 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  • Berger, D. K., Crampton, B. G., Hein, I., & Vos, W. (2007). Screening of cDNA libraries on glass slide microarrays. Methods in Molecular Biology, 382, 177–203.

    Article  CAS  PubMed  Google Scholar 

  • Bernier, F., & Berna, A. (2001). Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiology and Biochemistry, 39, 545–554.

    Article  CAS  Google Scholar 

  • Birch, P. R. J., Avrova, A. O., Duncan, J. M., Lyon, G. D., & Toth, R. L. (1999). Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Molecular Plant-Microbe Interactions, 12, 356–361.

    Article  CAS  Google Scholar 

  • Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D. H., Johnson, D., et al. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology, 18, 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Busam, G., Kassemeyer, H. H., & Matern, U. (1997). Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiology, 115, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  • Butt, A., Mousley, C., Morris, K., Beynon, J., Can, C., Holub, E., et al. (1998). Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. The Plant Journal, 16, 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Kim, H. M., Yun, H. K., Park, J. A., Kim, W. T., & Bok, S. H. (1996). Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiology, 112, 353–359.

    Article  CAS  PubMed  Google Scholar 

  • Chong, J., Le Henanff, G., Bertsch, C., & Walter, B. (2008). Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiology and Biochemistry, 46, 469–481.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, A. B., Cho, B. H., Naesby, M., Gregersen, P. L., Brandt, J., Madriz-Ordenana, K., et al. (2002). The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 3, 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Coetzer, N., Gazendam, I., Oelofse, D., & Berger, D. K. (2010). SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea. Plant Methods, 6, 10.

    Article  PubMed  CAS  Google Scholar 

  • Dai, G. H., Andary, C., Mondolot-Cosson, L., & Boubals, D. (1995). Histochemical studies on the interaction between three species of grapevine Vitis vinifera, V. rupestris and V.rotundifolia and the downy fungus, Plasmopara viticola. Physiological and Molecular Plant Pathology, 46, 177–188.

    Article  Google Scholar 

  • Dauch, A. L., & Jabaji-Hare, S. H. (2006). Metallothionein and bZIP Transcription Factor Genes from Velvetleaf and Their Differential Expression Following Colletotrichum coccodes Infection. Phytopathology, 96, 1116–1123.

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt, J., Al-Masri, A. N., Kurkcuoglu, S., Szankowski, I., & Gau, A. E. (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics, 273, 326–335.

    Article  CAS  PubMed  Google Scholar 

  • Derckel, J. P., Baillieul, F., Manteau, S., Audran, J. C., Haye, B., Lambert, B., et al. (1999). Differential Induction of Grapevine Defenses by Two Strains of Botrytis cinerea. Phytopathology, 89, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Diez-Navajas, A. M., Wiedemann-Merdinoglu, S., Greif, C., & Merdinoglu, D. (2008). Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology, 98, 776–780.

    Article  CAS  PubMed  Google Scholar 

  • Fung, R. W., Gonzalo, M., Fekete, C., Kovacs, L. G., He, Y., Marsh, E., et al. (2008). Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology, 146, 236–249.

    Article  CAS  PubMed  Google Scholar 

  • Gindro, K., Pezet, R., & Viret, O. (2003). Histological study of the responses of two Vitis vinifera cultivars (resistant and susceptible) to Plasmopara viticola infections. Plant Physiology and Biochemistry, 41, 846–853.

    Article  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D., Able, A. J., & Dry, I. B. (2007). Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Molecular Plant-Microbe Interactions, 20, 1112–1125.

    Article  CAS  PubMed  Google Scholar 

  • Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8, 629–643.

    Article  CAS  PubMed  Google Scholar 

  • Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18, 819–829.

    Article  CAS  PubMed  Google Scholar 

  • Heath, M. C. (2000). Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 3, 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Iandolino, A. B., Goes da Silva, F., Lim, H., Choi, H., Williams, L. E., & Cook, D. R. (2004). High-quality RNA, cDNA, and dervided EST libraries from grapevine (Vitis vinifera L.). Plant Molecular Biology Reporter, 22, 269–278.

    Article  CAS  Google Scholar 

  • Jantasuriyarat, C., Gowda, M., Haller, K., Hatfield, J., Lu, G., Stahlberg, E., et al. (2005). Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology, 138, 105–115.

    Article  PubMed  Google Scholar 

  • Keogh, R. C., Deverall, B. J., & McLeod, S. (1980). Comparison of histological and physiological responses to Phakoopsora pachyrhizi in resistant and susceptible soybean. Transactions of the British Mycological Society, 74, 328–333.

    Article  Google Scholar 

  • Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., & Maeshima, M. (2006). Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant & Cell Physiology, 47, 309–318.

    Article  CAS  Google Scholar 

  • Kortekamp, A. (2005). Growth, occurrence and development of septa in Plasmopara viticola and other members of the Peronosporaceae using light- and epifluorescence-microscopy. Mycological Research, 109, 640–648.

    Article  PubMed  Google Scholar 

  • Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Kortekamp, A., & Zyprian, E. (2003). Characterization of Plasmopara-resistance in grapevine using in vitro plants. Journal of Plant Physiology, 160, 1393–1400.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    Article  CAS  Google Scholar 

  • Lo, S. C., Hipskind, J. D., & Nicholson, R. L. (1999). cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Molecular Plant-Microbe Interactions, 12, 479–489.

    Article  CAS  PubMed  Google Scholar 

  • Lu, G., Jantasuriyarat, C., Zhou, B., & Wang, G. L. (2004). Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theoretical and Applied Genetics, 108, 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Mauch, F., Mauch-Mani, B., & Boller, T. (1988). Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and beta-1, 3-glucanase. Plant Physiology, 87, 936–942.

    Article  Google Scholar 

  • McGee, J. D., Hamer, J. E., & Hodges, T. K. (2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant-Microbe Interactions, 14, 877–886.

    Article  CAS  PubMed  Google Scholar 

  • Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7, 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, S., Barakat, M., Picarra-Pereira, M. A., Teixeira, A. R., & Ferreira, R. B. (2003). Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology, 93, 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  • Moy, P., Qutob, D., Chapman, B. P., Atkinson, I., & Gijzen, M. (2004). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Molecular Plant-Microbe Interactions, 17, 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  • Musetti, R., Marabottini, R., Badiani, M., Martini, M., di Toppi, L. S., Borselli, S., et al. (2007). On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence doree disease. Functional Plant Biology, 34, 750–758.

    Article  CAS  Google Scholar 

  • Okushima, Y., Koizumi, N., Kusano, T., & Sano, H. (2000). Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Molecular Biology, 42, 479–488.

    Article  CAS  PubMed  Google Scholar 

  • Panstruga, R. (2003). Establishing compatibility between plants and obligate biotrophic pathogens. Current Opinion in Plant Biology, 6, 320–326.

    Article  CAS  PubMed  Google Scholar 

  • Pezet, R., Gindro, K., Viret, O., & Richter, H. (2004). Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis, 43, 145–148.

    CAS  Google Scholar 

  • Pina, A., & Errea, P. (2008). Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. Journal of Plant Physiology, 165, 705–714.

    Article  CAS  PubMed  Google Scholar 

  • Polesani, M., Bortesi, L., Ferrarini, A., Zamboni, A., Fasoli, M., Zadra, C., et al. (2010). General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics, 11, 117.

    Article  PubMed  CAS  Google Scholar 

  • Polesani, M., Desario, F., Ferrarini, A., Zamboni, A., Pezzotti, M., Kortekamp, A., et al. (2008). cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics, 9, 142.

    Article  PubMed  CAS  Google Scholar 

  • Ponchet, M., Panabieres, F., Milat, M. L., Mikes, V., Montillet, J. L., Suty, L., et al. (1999). Are elicitins cryptograms in plant-Oomycete communications? Cellular and Molecular Life Sciences, 56, 1020–1047.

    Article  CAS  PubMed  Google Scholar 

  • Restrepo, S., Myers, K. L., del Pozo, O., Martin, G. B., Hart, A. L., Buell, C. R., et al. (2005). Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., et al. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32, 5539–5545.

    Article  CAS  PubMed  Google Scholar 

  • Scheel, D. (1998). Resistance response physiology and signal transduction. Current Opinion in Plant Biology, 1, 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Sewalt, V. J. H., Ni, W. T., Blount, J. W., Jung, H. G., Masoud, S. A., Howles, P. A., et al. (1997). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115, 41–50.

    CAS  PubMed  Google Scholar 

  • Smalle, J., & Vierstra, R. D. (2004). The ubiquitin 26 S proteasome proteolytic pathway. Annual Review of Plant Biology, 55, 555–590.

    Article  CAS  PubMed  Google Scholar 

  • Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., & Boutry, M. (2005). NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiology, 139, 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot, S., Varnier, A. L., Allegre, M., Mercier, L., Baillieul, F., Arnould, C., et al. (2008). A beta-1, 3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Molecular Plant-Microbe Interactions, 21, 232–243.

    Article  CAS  PubMed  Google Scholar 

  • Unger, S., Buche, C., Boso, S., & Kassemeyer, H. H. (2007). The Course of Colonization of Two Different Vitis Genotypes by Plasmopara viticola Indicates Compatible and Incompatible Host-Pathogen Interactions. Phytopathology, 97, 780–786.

    Article  PubMed  Google Scholar 

  • Van den Berg, N., Berger, D. K., Hein, I., Birch, P., Wingfield, M. J., & Viljoen, A. (2007). Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Molecular Plant Pathology, 8, 333–341.

    Article  Google Scholar 

  • Van den Berg, N., Crampton, B. G., Hein, I., Birch, P., & Berger, D. K. (2004). High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. Biotechniques, 37, 818–824.

    PubMed  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 7.

    Article  Google Scholar 

  • Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270, 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Vergne, E., Ballini, E., Marques, S., Sidi Mammar, B., Droc, G., Gaillard, S., et al. (2007). Early and specific gene expression triggered by rice resistance gene Pi33 in response to infection by ACE1 avirulent blast fungus. The New Phytologist, 174, 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Werner, S., Steiner, U., Becher, R., Kortekamp, A., Zyprian, E., & Deising, H. B. (2002). Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiology Letters, 208, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Wielgoss, A., & Kortekamp, A. (2006). Comparison of PR1 expression in grapevine cultures after inoculation with a host- and a non-host pathogen. Vitis, 45, 9–13.

    CAS  Google Scholar 

  • Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., & Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology, 135, 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  • Yazaki, K. (2006). ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters, 580, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Centre of Competence in Research (NCCR) Plant Survival, a research programme of the Swiss National Science Foundation. We thank Mrs. M. Waldner (Syngenta, Stein, Switzerland) for the grapevine seedlings and Dr J. Weber (Lausanne DNA Array Facility, University of Lausanne) for the assistance in the making of the SSH slides for the microarray screening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Mauch-Mani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legay, G., Marouf, E., Berger, D. et al. Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur J Plant Pathol 129, 281–301 (2011). https://doi.org/10.1007/s10658-010-9676-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9676-z

Keywords

Navigation