Skip to main content
Log in

BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Since most plants possess resistance mechanisms which can be induced upon pre-treatment with a variety of chemical compounds, the use of β-aminobutyric acid (BABA) as a defence inducer without reported toxic effect on the environment was studied. The aim of this work was to analyse the effectiveness of BABA to induce resistance against Phytophthora infestans and Fusarium solani in potato cultivars differing in their level of resistance to late blight. The behaviour of some components of biochemical mechanisms by which BABA increases resistance against P. infestans, as well as the effect of BABA on the activity of a potential pathogenic factor of F. solani, were studied. Plants with four applications of BABA throughout the crop cycle produced tubers more resistant to P. infestans and F. solani than non-treated plants. In addition, tuber slices from treated plants, inoculated with P. infestans, showed an increase in phenol and phytoalexin content. The aspartyl protease StAP1 accumulation was also higher in tubers obtained from treated plants and inoculated with P. infestans. This result was observed only in the more resistant potato cv. Pampeana, early after infection. In the potato–F. solani interaction, infected tubers coming from BABA-treated plants showed minor fungal proteolytic activity than infected, non-treated ones. For potato cvs Pampeana and Bintje, the BABA treatment improved the yield of harvested tubers. The number of tubers per plant and total weight of harvested tubers was greater for those obtained from treated plants with two early or four applications of BABA. The results show that the BABA treatment increases the resistance of potatoes but the degree of increase depends on the original level of resistance present in each cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi, P. A., Al-Dahmani, J., Sahin, F., Hoitink, H. A. J., & Miller, S. A. (2002). Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Disease, 86, 156–161. doi:10.1094/PDIS.2002.86.2.156.

    Article  CAS  Google Scholar 

  • Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62, 162–170. doi:10.1002/ps.1142.

    Article  PubMed  CAS  Google Scholar 

  • Andreu, A. B., Oliva, C. R., Distel, S., & Daleo, G. R. (2001). Production of phytoalexins, glycoalcaloids and phenolics in leaves and tubers of potato cultivars with different degrees of field resistance after infection with Phytophthora infestans. Potato Research, 44, 1–9. doi:10.1007/BF02360281.

    Article  CAS  Google Scholar 

  • Cipollini, D. F., Purrington, C. B., & Bergelson, J. (2003). Costs of induced responses in plants. Basic and Applied Ecology, 4, 79–89. doi:10.1078/1439-1791-00134.

    Article  Google Scholar 

  • Cohen, Y. R. (2002). β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 86, 448–457. doi:10.1094/PDIS.2002.86.5.448.

    Article  CAS  Google Scholar 

  • Cole, D. L. (1999). The efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance, against bacterial and fungal diseases of tobacco. Crop Protection, 18, 267–273. doi:10.1016/S0261-2194(99)00026-5.

    Article  CAS  Google Scholar 

  • Ge, S., Cheng, X., Xue, Z., Yang, L., & Zheng, X. (2005). β-Aminobutyric acid-mediated enhancement of resistance in tobacco against TMV and consideration of its capability in wounded tobacco plants. Indian Journal of Biochemistry and Biophysics, 42, 166–172.

    CAS  Google Scholar 

  • Greyerbiehl, J. A., & Hammerschmidt, R. (1998). Induced resistance against Fusarium sambucinum in potato tuber tissue. (Abstr.). Phytopathology, 88, s34.

    Google Scholar 

  • Guevara, M. G., Oliva, C. R., Huarte, M., & Daleo, G. R. (2002). An aspartyl protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. European Journal of Plant Pathology, 108, 131–137. doi:10.1023/A:1015049629736.

    Article  CAS  Google Scholar 

  • Guevara, M. G., Oliva, C. R., Machinandiarena, M., & Daleo, G. R. (1999). Purification and properties of an aspartyl proteinase from potato tuber which is inhibited by a basic chitinase. Physiologia Plantarum, 106, 164–169. doi:10.1034/j.1399-3054.1999.106203.x.

    Article  CAS  Google Scholar 

  • Heil, M. (1999). Systemic acquired resistance: available information and open ecological questions. Journal of Ecology, 87, 341–346. doi:10.1046/j.1365-2745.1999.00359.x.

    Article  Google Scholar 

  • Huarte, M., Butzonitch, I., Van Damme, M., Colavita, M., Capezio, S., Micheletto, S., et al. (1997). Experiencias, dificultades y logros obtenidos en la búsqueda de resistencia durable a enfermedades. In Ed. D. Danial, (pp: 154–163). Primer Taller de PREDUZA en Resistencia Duradera en Cultivos Altos en la Zona Andina. Quito, Ecuador, September 22–24.

  • Huarte, M., Van Damme, M., & Macagno, L. (1995). Importancia y nivel de daño económico de las principales enfermedades fungosas de la papa en la Argentina en relación con otros factores limitantes. In Memorias del Seminario-Taller PROCIPA Control Integrado de las Principales Enfermedades Fungosas de la Papa. Uruguay PROCIPA/INIA/CIP, (pp 1–10). Lima, Perú.

  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J. P., et al. (2001). β-Aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology, 107, 29–37. doi:10.1023/A:1008730721037.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacterioophage T4. Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  PubMed  CAS  Google Scholar 

  • Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., et al. (2001). Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Disease, 85, 481–488. doi:10.1094/PDIS.2001.85.5.481.

    Article  CAS  Google Scholar 

  • Nelson, R. R. (1978). Genetics of horizontal resistance to plant diseases. Annual Review of Plant Patholology, 16, 359–378.

    Google Scholar 

  • Olivieri, F. P., Godoy, A. V., Escande, A., & Casalongué, C. A. (1998). Analysis of intercellular washing fluid of potato tuber and detection of increased proteolytic activity upon inoculation with Fusarium eumartii. Physiologia Plantarum, 104, 232–238. doi:10.1034/j.1399-3054.1998.1040211.x.

    Article  CAS  Google Scholar 

  • Olivieri, F. P., Maldonado, S., Tonón, C., & Casalongué, C. A. (2004). Hydrolytic activities of Fusarium solani and Fusarium solani f. sp. eumartii associated with the infection process of potato tubers. Journal of Phytopathology, 152, 337–344. doi:10.1111/j.1439-0434.2004.00851.x.

    Article  Google Scholar 

  • Olivieri, F. P., Zanetti, M. E., Oliva, C. R., Covarrubias, A., & Casalongué, C. A. (2002). Characterization of a novel extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. European Journal of Plant Pathology, 108, 63–72. doi:10.1023/A:1013920929965.

    Article  CAS  Google Scholar 

  • Perez, L., Rodríguez, M. E., Rodríguez, R., & Roson, C. (2003). Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp. tabacina. Crop Protection, 22, 405–413. doi:10.1016/S0261-2194(02)00198-9.

    Article  CAS  Google Scholar 

  • Radtke, W., & Escande, A. (1973). Pathogenicity of cepas from the Fusarium collection on Solanum tuberosum cultivars (vol. 49, pp. 62–70). Argentina: Revista de la Facultad de Agronomía.

    Google Scholar 

  • Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acid and potassium phosphites. Plant Disease, 87, 933–936. doi:10.1094/PDIS.2003.87.8.933.

    Article  CAS  Google Scholar 

  • Ridder, J. K., Bus, C. B., & Schepers, H. T. A. M. (1995). Experimenting with decision support system against late blight in potatoes (ProPhy) in The Netherlands. Phytophthora infestans, 150, 214–219.

    Google Scholar 

  • Schippers, P. A. (1976). The relationship between specific gravity and percentage dry matter in potato tubers. American Potato Journal, 53, 111–122. doi:10.1007/BF02854115.

    Article  Google Scholar 

  • Shailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57, 721–728. doi:10.1002/ps.346.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, N. W. (1991). Genetics of horizontal resistance to diseases of crops. Biological Reviews, 66, 189–241. doi:10.1111/j.1469-185X.1991.tb01140.x.

    Article  Google Scholar 

  • Tuzun, S. (2001). The relationship between pathogen-induced systemic resistance (ISR) and multigenic (horizontal) resistance in plants. European Journal of Plant Pathology, 107, 85–93. doi:10.1023/A:1008784417222.

    Article  Google Scholar 

  • Vallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science, 44, 1920–1934.

    Google Scholar 

  • Van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defence in Arabidopsis. Proceedings National Academy for Science U S A, 103, 5602–5607. doi:10.1073/pnas.0510213103.

    Article  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J. P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defence mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings National Academy for Science U S A, 97, 12920–12925. doi:10.1073/pnas.230416897.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of ANPCyT, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) and Universidad Nacional de Mar del Plata. Olivieri FP, Guevara MG and Andreu AB are established researchers from CONICET. Daleo GR is an established researcher of CIC. Huarte MA is an established researcher of INTA. Lobato MC is a fellow of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Olivieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivieri, F.P., Lobato, M.C., González Altamiranda, E. et al. BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani . Eur J Plant Pathol 123, 47–56 (2009). https://doi.org/10.1007/s10658-008-9340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9340-z

Keywords

Navigation