Skip to main content

Advertisement

Log in

Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = −0.70 for As and r = −0.54 for Cd) and soil respiration (SR) (r = −0.88 for As and r = −0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2–4), 121–142.

    Article  CAS  Google Scholar 

  • Asensio, V., Covelo, E. F., & Kandeler, E. (2013). Soil management of copper mine tailing soils—sludge amendment and tree vegetation could improve biological soil quality. Science of the Total Environment, 456–457, 82–90.

    Article  Google Scholar 

  • Bade, R., Oh, S., & Shin, W. S. (2012). Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicology and Environmental Safety, 80, 299–307.

    Article  CAS  Google Scholar 

  • Baker, L. R., White, P. M., & Pierzynski, G. M. (2011). Changes in microbial properties after manure, lime, and bentonite application to a potentially toxic trace elements-contaminated mine waste. Applied Soil Ecology, 48(1), 1–10.

    Article  Google Scholar 

  • Chlopecka, A., & Adriano, D. C. (1996). Mimicked in situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc. Environmental Science and Technology, 30(11), 3294–3303.

    Article  CAS  Google Scholar 

  • Cobo, M., Gálvez, A., Conesa, J. A., & de Correa, C. M. (2009). Characterization of fly ash from a hazardous waste incinerator in Medellin Colombia. Journal of Hazardous Materials, 168(2–3), 1223–1232.

    Article  CAS  Google Scholar 

  • de Mora, A. P., Ortega-Calvo, J., Cabrera, F., & Madejón, E. (2005). Changes in enzyme activities and microbial biomass after “in situ” remediation of a potentially toxic trace elements-contaminated soil. Applied Soil Ecology, 28(2), 125–137.

    Article  Google Scholar 

  • Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (Vol. 49, pp. 247–271). Fitchburg: Soil Science Society of America.

    Google Scholar 

  • Dutré, V., Vandecasteele, C., & Opdenakker, S. (1999). Oxidation of arsenic bearing fly ash as pretreatment before solidification. Journal of Hazardous Materials, 68(3), 205–215.

    Article  Google Scholar 

  • Edwards, C. A. (2002). Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, 38(3–4), 225–231.

    Article  CAS  Google Scholar 

  • Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on potentially toxic trace elements immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142(1–2), 47–57.

    Article  CAS  Google Scholar 

  • Hale, B., Evans, L., & Lambert, R. (2012). Effects of cement or lime on Cd Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils. Journal of Hazardous Materials, 199–200, 119–127.

    Article  Google Scholar 

  • Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., & Luo, F. (2014). Effects of mining wastewater discharges on potentially toxic trace elements pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration, 147(Part B), 139–150.

    Article  CAS  Google Scholar 

  • Kaschuk, G., Alberton, O., & Hungria, M. (2010). Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology & Biochemistry, 42(1), 1–13.

    Article  CAS  Google Scholar 

  • Kim, D. H., Shin, M. C., Choi, H. D., Seo, C. I., & Baek, K. T. (2008). Removal mechanisms of copper using steel-making slag: Adsorption and precipitation. Desalination, 223(1–3), 283–289.

    Article  CAS  Google Scholar 

  • Kizikaya, R., Aşkin, T., Bayrakli, B., & Sağlam, M. (2004). Microbiological characteristics of soils contaminated with potentially toxic trace elements. European Journal of Soil Biology, 40(2), 95–102.

    Article  Google Scholar 

  • Ko, M. S., Kim, J. Y., Lee, J. S., Ko, J. I., & Kim, K. W. (2013). Arsenic immobilization in water and soil using acid mine drainage sludge. Applied Geochemistry, 35, 1–6.

    Article  CAS  Google Scholar 

  • Komárek, M., Vaněk, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environmental Pollution, 172, 9–22.

    Article  Google Scholar 

  • Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., & Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution, 187, 153–161.

    Article  CAS  Google Scholar 

  • Leist, M., Casey, R. J., & Caridi, D. (2000). The management of arsenic wastes: Problems and prospects. Journal of Hazardous Materials, 76(1), 125–138.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils (pp. 127–333). London: Oxford University Press.

    Google Scholar 

  • Mikanova, O. (2006). Effects of potentially toxic trace elements on some soil biological parameters. Journal of Geochemical Exploration, 88(1–3), 220–223.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Remediation of arsenic-contaminated soils by iron amendments—a review. Critical Reviews in Environmental Science and Technology, 40(2), 93–115.

    Article  CAS  Google Scholar 

  • Moon, D. H., Dermatas, D., & Menounou, N. (2004). Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Science of the Total Environment, 330(1–3), 171–185.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Ceccanti, B., Cervelli, S., & Sequi, P. (1978). Stability and kinetic properties of humus-urease complexes. Soil Biology & Biochemistry, 10(2), 143–147.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In A. L. Page et al. (Eds.), Methods of soil analysis, part 2. Chemical analysis (2nd ed., pp. 961–1110). Madison: Soil Science Society of America.

    Google Scholar 

  • Nwachukwu, O. I., & Pulford, I. D. (2011). Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. Journal of Hazardous Materials, 185(2–3), 1140–1147.

    Article  CAS  Google Scholar 

  • Oh, S. J., Kim, S. C., Kim, R. Y., Ok, Y. S., Yun, H. S., Oh, S. M., et al. (2012). Change of bioavailability in potentially toxic trace elements contaminated soil by chemical amendment. Korean Journal of Soil Science and Fertilizer, 45(6), 973–982.

    Article  CAS  Google Scholar 

  • Pant, H. K., & Warman, P. R. (2000). Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biology and Fertility of Soils, 30(4), 306–311.

    Article  CAS  Google Scholar 

  • Qiu, H., Gu, H. H., He, E. K., Wang, S. Z., & Qiu, R. L. (2012). Attenuation of metal bioavailability in acidic multi-metal contaminated soil treated with fly ash and steel slag. Pedosphere, 22(4), 544–553.

    Article  CAS  Google Scholar 

  • Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks et al. (Eds.), Methods of soil analysis part 3. Chemical methods. Madison: Soil Science Society of America.

    Google Scholar 

  • Sun, Y., Li, Y., Xu, Y., Liang, X., & Wang, L. (2015). In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105–106, 200–206.

    Article  Google Scholar 

  • Tsang, D. C. W., Olds, W. E., Weber, P. A., & Yip, A. C. K. (2013). Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere, 93(11), 2839–2847.

    Article  CAS  Google Scholar 

  • US EPA. (2007). The use of soil amendments for remediation, revitalization, and reuse. http://nepis.epa.gov/Exe/ZyPDF.cgi/60000LQ7.PDF?Dockey=60000LQ7.

  • Van den Berg, G. A., & Loch, J. (2000). Decalcification of soils subject to periodic waterlogging. European Journal of Soil Science, 51(1), 27–33.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology & Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Vandecasteele, C., Dutré, V., Geysen, D., & Wauters, G. (2002). Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Management, 22(2), 143–146.

    Article  CAS  Google Scholar 

  • Wu, Y. J., Zhou, H., Zou, Z. J., Zhu, W., Yang, W. T., Peng, P. Q., et al. (2016). A three-year in situ study on the persistence of a combined amendment (limestone + sepiolite) for remedying paddy soil polluted with heavy metals. Ecotoxicology and Environmental Safety, 130, 163–170.

    Article  CAS  Google Scholar 

  • Zheng, S., & Zhang, M. (2011). Effect of moisture regime on the redistribution of heavy metals in paddy soil. Journal of Environmental Science, 23(3), 434–443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Kangwon National University (C 1009703-01-01) and the Korean Ministry of Environment (MOE) as the “Development of Korean Evaluation and Management System of Surface Soil Resources” in the GAIA Project (201400054003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae E. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.C., Hong, Y.K., Oh, S.J. et al. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields. Environ Geochem Health 39, 345–352 (2017). https://doi.org/10.1007/s10653-017-9921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9921-x

Keywords

Navigation