Skip to main content

Advertisement

Log in

Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10−6) and minimal non-cancer risks (hazard index <1) to adults and children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexakis, D. (2016). Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site. Archives of Agronomy and Soil Science, 62(3), 359–373.

    Article  CAS  Google Scholar 

  • Bossio, D. A., Scow, K. M., Gunapala, N., & Graham, K. J. (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36(1), 1–12.

    Article  CAS  Google Scholar 

  • Byer, J. D., Struger, J., Sverko, E., Klawunn, P., & Todd, A. (2011). Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA. Chemosphere, 82(8), 1155–1160.

    Article  CAS  Google Scholar 

  • Cheng, Q. M., Huang, Q., Liao, Z. N., Yang, J. W., Wu, D. C., & Su, L. (2015). Determination of atrazine and pendimethalin in Erigeron breviscapus (Vant.) Hand-Mazz and soil by accelerated solvent extraction and gas chromatography-mass spectrometry. Journal of Analytical Science, 31(1), 115–118. (in Chinese).

    Google Scholar 

  • Deng, J. C., Jiang, X., Wang, D. Z., Lu, X., Gao, H. J., & Wang, F. (2005). Research advance of environmental fate of herbicide atrazine and model fitting in farmland ecosystem. Acta Ecologica Sinica, 25(12), 3359–3367. (in Chinese).

    CAS  Google Scholar 

  • Fang, H., Lian, J. J., Wang, H. F., Cai, L., & Yu, Y. L. (2015). Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. Journal of Hazardous Materials, 286, 457–465.

    Article  CAS  Google Scholar 

  • Freeman, L. E. B., Rusiecki, J. A., Hoppin, J. A., Lubin, J. H., Koutros, S., Andreotti, G., et al. (2011). Atrazine and cancer incidence among pesticide applicators in the agricultural health study (1994–2007). Environmental Health Perspectives, 119(9), 1253–1259.

    Article  CAS  Google Scholar 

  • Godoi, I., Sene, L., & Caracciolo, A. B. (2014). Assessment of the bacterial community structure in a Brazilian clay soil treated with atrazine. Annals of Microbiology, 64(1), 307–311.

    Article  CAS  Google Scholar 

  • Hayes, T. B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A. A., et al. (2002). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5476–5480.

    Article  CAS  Google Scholar 

  • He, Y., Ding, N., Shi, J. C., Wu, M., Liao, H., & Xu, J. M. (2013). Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biology and Biochemistry, 57, 625–634.

    Article  CAS  Google Scholar 

  • Islam, S., Ahmed, K., & Al-Mamun, H. (2015). Distribution of trace elements in different soils and risk assessment: A case study for the urbanized area in Bangladesh. Journal of Geochemical Exploration, 158, 212–222.

    Article  CAS  Google Scholar 

  • Ji, Y. F., Dong, C. X., Kong, D. Y., Lu, J. H., & Zhou, Q. S. (2015). Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 263, 45–54.

    Article  CAS  Google Scholar 

  • Krutz, L. J., Gentry, T. J., Senseman, S. A., Pepper, I. L., & Tierney, D. P. (2006). Mineralisation of atrazine, metolachlor and their respective metabolites in vegetated filter strip and cultivated soil. Pest Management Science, 62(6), 505–514.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, P. B., Muir, D. C. G., Bidleman, T. F., Small, J., Backus, S., & Dove, A. (2010). Metolachlor and atrazine in the Great Lakes. Environmental Science and Technology, 44(12), 4678–4684.

    Article  CAS  Google Scholar 

  • Lasserre, J. P., Fack, F., Revets, D., Planchon, S., Renaut, J., Hoffmann, L., et al. (2009). Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. Journal of Proteome Research, 8(12), 5485–5496.

    Article  CAS  Google Scholar 

  • Li, Q., Luo, Y., Song, J., & Wu, L. (2007). Risk assessment of atrazine polluted farmland and drinking water: A case study. Bulletin of Environmental Contamination and Toxicology, 78(3–4), 187–190.

    Article  CAS  Google Scholar 

  • Moorman, T. B., Jayackandran, K., & Reungsang, A. (2001). Adsorption and desorption of atrazine in soils and subsurface sediments. Soil Science, 166(12), 921–929.

    Article  CAS  Google Scholar 

  • Murphy, M. B., Hecker, M., Coady, K. K., Tompsett, A. R., Jones, P. D., Du, Preez L. H., et al. (2006). Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquatic Toxicology, 76(3–4), 230–245.

    Article  CAS  Google Scholar 

  • Niu, L. L., Xu, C., Yao, Y. J., Liu, K., Yang, F. X., Tang, M. L., et al. (2013). Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across China. Environmental Science and Technology, 47(21), 12140–12147.

    Article  CAS  Google Scholar 

  • Panshin, S. Y., Carter, D. S., & Bayless, E. R. (2000). Analysis of atrazine and four degradation products in the pore water of the vadose zone, central Indiana. Environmental Science and Technology, 34(11), 2131–2137.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2015). R: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267(1–3), 125–140.

    Article  CAS  Google Scholar 

  • Rovira, J., Vilavert, L., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2015). Temporal trends in the levels of metals, PCDD/Fs and PCBs in the vicinity of a municipal solid waste incinerator. Preliminary assessment of human health risks. Waste Management, 43, 168–175.

    Article  CAS  Google Scholar 

  • Satsuma, K. (2009). Complete biodegradation of atrazine by a microbial community isolated from a naturally derived river ecosystem (microcosm). Chemosphere, 77(4), 590–596.

    Article  CAS  Google Scholar 

  • Schwab, A. P., Splichal, P. A., & Banks, M. K. (2006). Persistence of atrazine and alachlor in ground water aquifers and soil. Water, Air, and Soil Pollution, 171(1–4), 203–235.

    Article  CAS  Google Scholar 

  • Short, P., & Colborn, T. (1999). Pesticide use in the US and policy implications: A focus on herbicides. Toxicology and Industrial Health, 15(1–2), 240–275.

    Article  CAS  Google Scholar 

  • Sun, J. T., Pan, L. L., Zhan, Y., Lu, H. N., Tsang, D. C. W., Liu, W. X., et al. (2016). Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 544, 670–676.

    Article  CAS  Google Scholar 

  • Sutton, N. B., Maphosa, F., Morillo, J. A., Abu, Al-Soud W., Langenhoff, A. A. M., Grotenhuis, T., et al. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619–630.

    Article  CAS  Google Scholar 

  • Tang, Z., Huang, Q., Nie, Z., Yang, Y., Yang, J., Qu, D., et al. (2016). Levels and distribution of organochlorine pesticides and hexachlorobutadiene in soils and terrestrial organisms from a former pesticide-producing area in Southwest China. Stochastic Environmental Research and Risk Assessment, 30(4), 1249–1262.

    Article  Google Scholar 

  • Tunlid, A., Hoitink, H. A. J., Low, C., & White, D. C. (1989). Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of fatty-acid biomarkers. Applied and Environmental Microbiology, 55(6), 1368–1374.

    CAS  Google Scholar 

  • US EPA. (1989). Risk assessment guidance for superfund, Vol. I: Human health evaluation manual. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA/540/1–89/002.

  • US EPA. (1997). Exposure factors handbook. Washington, DC: US Environmental Protection Agency, Office of Research and Development. EPA/600/P-95/002F.

  • US EPA. (2013). United States Environmental Protection Agency, Atrazine updates. http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm.

  • US EPA. (2015). United States Environmental Protection Agency, Risk-Based Screening Table. http://www.epa.gov/risk/regional-screening-table.

  • Vonberg, D., Vanderborght, J., Cremer, N., Putz, T., Herbst, M., & Vereecken, H. (2014). 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Research, 50, 294–306.

    Article  CAS  Google Scholar 

  • Vryzas, Z., Papadakis, E. N., Oriakli, K., Moysiadis, T. P., & Papadopoulou-Mourkidou, E. (2012). Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities. Chemosphere, 89(11), 1330–1338.

    Article  CAS  Google Scholar 

  • Vryzas, Z., Vassiliou, G., Alexoudis, C., & Papadopoulou-Mourkidou, E. (2009). Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Research, 43(1), 1–10.

    Article  CAS  Google Scholar 

  • Wang, J., Chen, G. C., Christie, P., Zhang, M. Y., Luo, Y. M., & Teng, Y. (2015). Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, 523, 129–137.

    Article  CAS  Google Scholar 

  • Wang, L. R., & Zhao, M. Y. (2000). An analytical method for determination of atrazine residue in irrigation water and soil, and its potential effects. Agro-environmental Protection, 19(2), 111–113. (in Chinese).

    Google Scholar 

  • Wu, Q. Q., Yang, Q., Zhou, W. J., & Zhu, L. Z. (2015). Sorption characteristics and contribution of organic matter fractions for atrazine in soil. Journal of Soils and Sediments, 15(11), 2210–2219.

    Article  CAS  Google Scholar 

  • Ye, C. M., Gong, A. J., Wang, X. J., Zheng, H. H., & Lei, Z. F. (2001). Distribution of atrazine in a crop-soil-groundwater system at Baiyangdian Lake area in China. Journal of Environmental Sciences-China, 13(2), 148–152.

    CAS  Google Scholar 

  • Zaya, R. M., Amini, Z., Whitaker, A. S., Kohler, S. L., & Ide, C. F. (2011). Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquatic Toxicology, 104(3–4), 243–253.

    Article  CAS  Google Scholar 

  • Zhang, J. J., Lu, Y. C., Zhang, J. J., Tan, L. R., & Yang, H. (2014). Accumulation and toxicological response of atrazine in rice crops. Ecotoxicology and Environmental Safety, 102, 105–112.

    Article  Google Scholar 

  • Zhong, Y. C., & Zhu, L. Z. (2013). Distribution, input pathway and soil–air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Science of the Total Environment, 444, 177–182.

    Article  CAS  Google Scholar 

  • Zogg, G. P., Zak, D. R., Ringelberg, D. B., MacDonald, N. W., Pregitzer, K. S., & White, D. C. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 61(2), 475–481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Basic Research Program of China (973 Program, 2014CB441101), the National Natural Science Foundations of China (21137003), and the Fundamental Research Funds for the Central Universities (2016FZA6007). The authors would like to thank Ms. Zi Wei from the Analysis and Measurement Center of Zhejiang University for assistance in sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Z. Zhu or X. D. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J.T., Pan, L.L., Zhan, Y. et al. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environ Geochem Health 39, 369–378 (2017). https://doi.org/10.1007/s10653-016-9853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9853-x

Keywords

Navigation