Skip to main content

Advertisement

Log in

Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The extractability of Cd, Pb, and Zn was investigated in contaminated agricultural topsoils located in an area highly affected by the past atmospheric emissions of two smelters in northern France in order to assess their mobility and human bioaccessibility. The determination of Cd, Pb, and Zn bioaccessibility (Unified Barge Method, in vitro test) was made to evaluate the absolute trace element (TE) bioavailability. The results highlighted differences in bioaccessibility between Cd, Pb, and Zn (Cd > Pb > Zn). The mean values of the bioaccessible fractions of Cd, Pb, and Zn during the gastric phase were 82, 55, and 33%, respectively, of the pseudototal concentrations, whereas during the gastrointestinal phase, the bioaccessible fractions of metals decreased to 45, 20, and 10%, respectively. Stepwise multiple regression analysis showed that human bioaccessibility was affected by various physicochemical parameters (i.e., sand, carbonates, organic matter, assimilated P, free Al oxides, and pseudototal Fe contents). Sequential extractions were performed as an indication of the TE availability in these soils. Cadmium occurred in the more available fractions, Pb was mostly present as bound by oxides, and a significant contribution to the pseudototal Zn concentration was defined as the unavailable residual form related to the crystalline structures of minerals. The concepts of bioavailability and bioaccessibility are important for quantifying the risks associated with exposure to environmental pollutants and providing more realistic information for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., & Barberis, R. (2006). Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air, and Soil Pollution, 173, 315–338.

    Article  CAS  Google Scholar 

  • Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35, 1615–1634.

    Article  CAS  Google Scholar 

  • Ahumada, I., Mendoza, J., & Ascar, L. (1999). Sequential extraction of heavy metals in soils irrigated with wastewater. Communications in Soil Science and Plant Analysis, 30, 1507–1519.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed., p. 368). New-York: Blacker Academic and Professional.

    Google Scholar 

  • Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Shah, A. (2008). Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar lake. Chemosphere, 70, 1845–1856.

    Article  CAS  Google Scholar 

  • Basta, N., & Gradwohl, R. (2000). Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. Journal of Soil Contamination, 9, 149–164.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimērez, E., Clemente, R., Lepp, N., & Dickinson, N. (2009). Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158, 155–160.

    Article  Google Scholar 

  • Bosso, S. T., & Enzweiler, J. (2007). Bioaccessible lead in soils slag, and mine wastes from an abandoned mining district in brazil. Environmental Geochemistry and Health, 30, 219–229.

    Article  Google Scholar 

  • Button, M., Watts, M. J., Cave, M. R., Harrington, C. F., & Jenkin, G. T. (2009). Earthworms and in vitro physiologically-based extraction tests: Complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environmental Geochemistry and Health, 31, 273–282.

    Article  CAS  Google Scholar 

  • Caboche, J. (2009). Validation d’un test de mesure de bioaccessibilité—application à 4 éléments traces métalliques dans les sols: As, Cd, Pb et Sb. Ph D Thesis. Institut National Polytechnique de Lorraine, Nancy, 249 pp.

  • Cave, M., Wragg, J., Klinck, B., Grön, C., Oomen, T., Van de Wiele, T., et al. (2–6 September, 2006). Preliminary assessment of a unified bioaccessibility method for arsenic in soils. International conference in epidemiology and environmental exposure, Paris.

  • Chlopecka, A., Bacon, J. R., Wilson, M. J., & Kay, J. (1996). Forms of cadmium, lead, and zinc in soils from Southwest Poland. Journal of Environment Quality, 25, 69–79.

    CAS  Google Scholar 

  • Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., da Costa Duarte, A., Díaz-Barrientos, E., et al. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.

    Article  CAS  Google Scholar 

  • Davis, A., Drexler, J. W., Ruby, M. V., & Nicholson, A. (1993). Micromineralogy of mine wastes in relation to lead bioavailability. Environmental Science and Technology, 27, 1415–1425.

    Article  CAS  Google Scholar 

  • Davis, A., Ruby, M. V., Goad, P., Eberle, S., & Chryssoulis, S. (1997). Mass balance on surface-bound mineralogic, and total lead concentrations as related to industrial aggregate bioaccessibility. Environmental Science and Technology, 31, 37–44.

    Article  CAS  Google Scholar 

  • Davranche, M., & Bollinger, J. C. (2000). Release of metals from iron oxyhydroxides under reductive conditions: Effects of metal/solid interactions. Journal of Colloid and Interface Science, 232, 165–173.

    Article  CAS  Google Scholar 

  • Day, J. P., Fergusson, J. E., & Chee, T. M. (1979). Solubility and potential toxicity of lead in urban street dust. Bulletin of Environmental Contamination and Toxicology, 23, 497–502.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., & Delalain, P. (2007). Bioaccessibility of lead in high carbonate soils. Journal of Environmental Science and Health A, 42, 1331–1339.

    Article  CAS  Google Scholar 

  • Denys, S., Tack, K., Caboche, J., & Delalain, P. (2009). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74, 711–716.

    Article  CAS  Google Scholar 

  • Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., et al. (2007). Contamination of urban soils in an area of northern France polluted by dust emissions of two smelters. Water, Air, and Soil Pollution, 188, 247–260.

    Article  Google Scholar 

  • Duggan, M. J., Inskip, M. J., Rundle, S. A., & Moorcroft, J. S. (1985). Lead in playground dust and on hands of schoolchildren. Science of the Total Environment, 44, 65–79.

    Article  CAS  Google Scholar 

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Single and sequential extraction procedures for soil and sediment partitioning analysis. In Ph. Quevauviller (Ed.) Cambridge, UK: RSC.

  • Grøn, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil. Environmental project No. 840, Technology Programme for Soil and Groundwater Contamination. Danish Environmental Protection Agency, 113 pp.

  • Guo, G. L., Zhou, Q. X., Koval, P. V., & Belogolova, G. A. (2006). Speciation distribution of Cd, Pb, Cu and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures. Australian Journal of Soil Research, 44, 135–142.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science of the Total Environment, 178, 11–20.

    Article  CAS  Google Scholar 

  • Hamel, S. C., Ellickson, K. M., & Lioy, P. J. (1999). The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: Mass-balance and soil recapture. Science of the Total Environment, 244, 273–283.

    Article  Google Scholar 

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 23, 78–93.

    Article  CAS  Google Scholar 

  • Hickey, M. G., & Kittrick, J. A. (1984). Chemical partitioning of Cd, Ni and Zn in soils and sediments containing high levels of heavy metals. Journal of Environment Quality, 13, 189–197.

    Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., & Afridi, H. I. (2007a). Heavy metal from soil and domestic sewage sludge and their transfer to Sorghum plants. Environmental Chemistry Letters, 5, 209–218.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Adil, R. S. R. (2006). Correlation of total and extractable heavy metals from soil and domestic sewage sludge and their transfer to maize (Zea mays L.) plants. Toxicological and Environmental Chemistry, 88, 619–632.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Memon, A. R. (2007b). Heavy metal contents of vegetables grown in soil, irrigated with mixtures of waste-water and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. Journal of Agronomy and Crop Science, 193, 218–228.

    Article  CAS  Google Scholar 

  • Juhasz, A., Smith, E., & Naidu, R. (2003). Estimation of human availability of arsenic in contaminated soils. In A. Langley, M. Gilbey, & B. Kennedy (Eds.), Proceedings of the Fifth National Workshop on the Assessment of Site Contamination (pp. 183–194). Adelaide, Australia.

  • Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126, 225–233.

    Article  CAS  Google Scholar 

  • Kabala, C., & Singh, B. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environment Quality, 30, 485–492.

    Article  CAS  Google Scholar 

  • Karczewska, A. (1996). Metal species distribution in top- and sub- soil in an area affected by copper smelter emissions. Applied Geochemistry, 11, 35–42.

    Article  CAS  Google Scholar 

  • Kheboian, C., & Bauer, C. F. (1987). Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Analytical Chemistry, 59, 1417–1423.

    Article  CAS  Google Scholar 

  • Knight, B. P., Chaudri, A. M., McGrath, S. P., & Giller, K. E. (1998). Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environmental Pollution, 99, 293–298.

    Article  CAS  Google Scholar 

  • Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc, cadmium, iron and manganese in soils near a copper smelter. Soil Science, 135, 101–109.

    Article  CAS  Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Lothenbach, B., Furrer, G., Schärli, H., & Schulin, R. (1999). Immobilization of zinc and cadmium by montmorillonite compounds: Effect of aging and subsequent acidification. Environmental Science and Technology, 33, 2945–2952.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environment Quality, 26, 259–264.

    CAS  Google Scholar 

  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40, 2812–2818.

    Article  CAS  Google Scholar 

  • McBride, M. B., Sauvé, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337–346.

    Article  CAS  Google Scholar 

  • Medlin, E. A. (1997). An in vitro method for estimating the relative bioavailability of lead in humans. Master’s Thesis, Department of Geological Sciences, University of Colorado at Boulder.

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Merian, E., Anke, M., Ihnat, M., & Stoeppler, M. (2004). Elements and their compound in the environment–Vol 2: Metals and their compounds. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Moreno-Jimēnez, E., Peñalosa, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution on soils surrounding on abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.

    Article  Google Scholar 

  • Mushak, P. (1991). Gastro-intestinal absorption of lead in children and adults: Overview of biological and biophysico-chemical aspects. Chemical Speciation and Bioavailability, 3, 87–104.

    CAS  Google Scholar 

  • Narwal, R. P., Singh, B. R., & Salbu, B. (1999). Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Communications in Soil Science and Plant Analysis, 30, 1209–1230.

    Article  CAS  Google Scholar 

  • Oomen, A. G. (2000). Determinants of oral bioavailability of soil-borne contaminants (p. 128). Utrecht: Universiteit Utrecht.

    Google Scholar 

  • Oomen, A. G., Bradon, E. F. A., Swartjes, F. A., & Sips, A. J. (2006). How can information on oral bioavailability improve human health risk assessment for lead-contaminated soils? 711701042/2006 Rr, RIVM, 108 pp.

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Schoeters, G., Verstraete, W., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Rompelberg, C. J., Bruil, M. A., Dobbe, C. J., Pereboom, D. P., & Sips, A. J. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44, 281–287.

    Article  CAS  Google Scholar 

  • Paustenbach, D. J. (2000). The practice of exposure assessment: A state of the art review. Journal of Toxicology and Environmental Health Part B, 3, 179–291.

    Article  CAS  Google Scholar 

  • Pickering, W. F. (1986). Metal ion speciation–soils and sediments (a review). Ore Geology Reviews, 1, 83–146.

    Article  CAS  Google Scholar 

  • Pierzynsky, G. M., Sims, J. T., & Vance, G. F. (2005). Soils and environmental quality. New York, USA: CRC Press, Taylor and Francis.

    Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology, 6, 495–604.

    Article  Google Scholar 

  • Ramos, L., Heinandez, L. M., & Gonzales, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from Donana National Park. Journal of Environment Quality, 23, 50–57.

    CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., et al. (2000). Application of modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), completed by a three-year stability study acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.

    Article  CAS  Google Scholar 

  • Reimann, C., & Filzmoser, P. (1998). Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.

    Article  Google Scholar 

  • Rieuwerts, J. S., Farago, M. E., Cikrt, M., & Bencko, V. (2000). Differences in lead bioavailability between a smelting and a mining area. Water, Air, and Soil Pollution, 122, 203–229.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., & Basta, N. T. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.

    CAS  Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrêne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by the atmospheric emissions of two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58, 945–954.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., et al. (1993). Development of an in vitro screening-test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 26, 1242–1248.

    Article  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Sahuquillo, A., López-Sánchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., et al. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.

    Article  CAS  Google Scholar 

  • Sánchez, G., Moyano, A., & Muñez, C. (1999). Forms of cadmium, lead, and zinc in polluted mining soils and uptake by plants (Soria province, Spain). Communications in Soil Science and Plant Analysis, 30, 1385–1402.

    Article  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (1996). Programme de recherches concertees (in French): Etude d’un secteur pollué par les métaux. Typologie et cartographie des sols, inventaire des polluants minéraux, étude de la migration verticale de Cd, Pb et Zn. Rapport Conseil Régional Nord-Pas de Calais—Secrétariat d’Etat à la recherche—ISA—INRA, Lille, 29 pp.

  • Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air, and Soil Pollution, 135, 173–194.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions (2nd ed.). New York, USA: Wiley.

    Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59, 225–238.

    Article  CAS  Google Scholar 

  • Tiller, K. G. (1989). Heavy metals in soils and their environmental importance. Advances in Soil Science, 9, 113–142.

    Google Scholar 

  • Van de Wiele, T. R., Oomen, A. G., Wragg, J., Cave, M., Minekus, M., Hack, A., et al. (2007). Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health A, 42, 1203–1211.

    Article  Google Scholar 

  • Violante, A., Ricciardella, M., & Pigna, M. (2003). Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of inorganic ligands. Water, Air, and Soil Pollution, 145, 289–306.

    Article  CAS  Google Scholar 

  • Waterlot, C., Bidar, G., Douay, F., & Daurangeon, F. (2008). Analysis of trace elements in solution, assessment of a background compensation technique on the as interference in the Cd analysis. Spectra Analyse, 261, 48–52.

    Google Scholar 

  • Waterlot, C., Douay, F., Pruvot, C., & Ciesielski, H. (12–14 December, 2006). Assessment of the mobility and the phytoavailability of heavy metals in kitchen garden soils: Effect of a phosphatic amendement. Difpolmine Conference (pp. 1–7). Bordeaux, France.

  • Wixson, B. G., & Davies, B. E. (1994). Guidelines for lead in soil: Proposal of the society of environmental geochemistry and health. Environmental Science and Technology, 28, 26–31.

    Article  Google Scholar 

  • Wragg, J., & Cave, M. R. (2003). In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review. P5-062/TR/01, British Geological Survey, 33 pp.

  • Yang, J. K., Barnett, M. O., Jardine, P. M., & Brooks, S. C. (2003). Factors controlling the bioaccessibility of Arsenic(V) and Lead(II) in soil. Soil and Sediment Contamination, 12, 165–179.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Nord-Pas de Calais Council, which contributed to the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Pelfrêne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelfrêne, A., Waterlot, C., Mazzuca, M. et al. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environ Geochem Health 33, 477–493 (2011). https://doi.org/10.1007/s10653-010-9365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9365-z

Keywords

Navigation