Skip to main content

Advertisement

Log in

Arsenic uptake and speciation in vegetables grown under greenhouse conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The accumulation of arsenic (As) by vegetables is a potential human exposure pathway. The speciation of As in vegetables is an important consideration due to the varying toxicity of different As species. In this study, common Australian garden vegetables were hydroponically grown with As-contaminated irrigation water to determine the uptake and species of As present in vegetable tissue. The highest concentrations of total As were observed in the roots of all vegetables and declined in the aerial portions of the plants. Total As accumulation in the edible portions of the vegetables decreased in the order radish ≫ mung bean > lettuce = chard. Arsenic was present in the roots of radish, chard, and lettuce as arsenate (AsV) and comprised between 77 and 92% of the total As present, whereas in mung beans, arsenite (AsIII) comprised 90% of the total As present. In aerial portions of the vegetables, As was distributed equally between both AsV and AsIII in radish and chard but was present mainly as AsV in lettuce. The presence of elevated As in vegetable roots suggests that As species may be complexed by phytochelatins, which limits As translocation to aerial portions of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002a). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science and Technology, 36, 962–968.

    Article  CAS  Google Scholar 

  • Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002b). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120–1128.

    Article  CAS  Google Scholar 

  • Ackerman, A. H., Creed, P. A., Parks, A. N., Fricke, M. W., Schwegel, C. A., Creed, J. T., et al. (2005). Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environmental Science and Technology, 39, 5241–5246.

    Article  CAS  Google Scholar 

  • Akter, K. F., Chen, Z., Smith, L., Davey, D., & Naidu, R. (2005). Speciation of arsenic in groundwater samples: A comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 68, 406–415.

    Article  CAS  Google Scholar 

  • Alam, M. G. M., Allinson, G., Stagnitti, F., Tanaka, A., & Westbrooke, M. (2002). Metal concentrations in rice and pulses of Samta Village, Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 323–329.

    Article  CAS  Google Scholar 

  • Bleeker, P. M., Schat, H., Vooijs, R., Verkeij, J. A. C., & Ernst, W. H. O. (2003). Mechanisms of arsenate tolerance in Cytisus striatus. New Phytologist, 157, 33–38.

    Article  CAS  Google Scholar 

  • Bunzl, K., Trautmannsheimer, M., Schramel, P., & Reifenhauser, W. (2001). Availability of arsenic, copper, lead, thallium and zinc to various vegetables grown in slag-contaminated soils. Journal of Environmental Quality, 30, 934–939.

    Article  CAS  Google Scholar 

  • Burlo, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D., & Martinez-Sanchez, F. (1999). Arsenic species: Effects on and accumulation by tomato plants. Journal of Agriculture and Food Chemistry, 47, 1247–1253.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H., Jr. (1998). The influence of arsenic chemical form and concentration on Spartens patens and Spartina alterinflora growth and tissue arsenic concentration. Plant and Soil, 198, 33–43.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A. A., Burlo, F., Valero, D., Lopez, E., Martinez-Romero, D., & Martinez-Sanchez, F. (1999). Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. Journal of Agriculture and Food Chemistry, 47, 2288–2294.

    Article  CAS  Google Scholar 

  • Carrizales, L., Razo, I., Tellez-Hernandez, J. I., Torres-Nerio, R., Torres, A., Batres, L. E., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environmental Research, 101, 1–10.

    Article  CAS  Google Scholar 

  • Cobb, G. P., Sands, K., Waters, M., Wixson, B. G., & Dorward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry, 19, 600–607.

    Article  CAS  Google Scholar 

  • Delnomdedieu, M., Basti, M. M., Otvos, J. D., & Thomas, D. J. (1994). Reduction and binding of arsenate and dimethylarsenate by glutathione—a magnetic-resonance study. Chemico-Biol Interactions, 90, 139–155.

    Article  CAS  Google Scholar 

  • Ellice, M. C., Dowling, K., Smith, J., Smith, E., & Naidu, R. (2001). Abandoned mine tailings with high arsenic concentrations: A case study with implications for regional Victoria. Proceedings of Arsenic in the Asia-Pacific Region: Managing Arsenic for Our Future, p. 124, 20–23 November. Adelaide, South Australia.

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Hartley-Whitaker, J., Woods, C., & Meharg, A. A. (2002). Is differential phytochelation production related to decreased arsenate influx in arsenate tolerant Holcus lanatus. New Phytologist, 155, 219–225.

    Article  CAS  Google Scholar 

  • Heitkemper, D. T., Vela, N. P., Stewart, K. R., & Westphal, C. S. (2001). Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 16, 299–306.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2006). In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114, 1826–1831.

    CAS  Google Scholar 

  • Liu, W. J., Zhu, Y. G., Smith, F. A., & Smith, S. A. (2004). Do phosphorus nutrition and iron plaque alter arsenic (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 162, 481–488.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F.-J., Fuhrmann, M., Ma, L. Q., & McGrath, S. P. (2002). Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 156, 195–203.

    Article  CAS  Google Scholar 

  • Marin, A. R., Masscheleyn, P. H., & Patrick, W. H., Jr. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue concentration. Plant and Soil, 139, 175–183.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Naidu, R., Smith, J., & Tiller, K. G. (1998). Fractionation and distribution of arsenic in soils contaminated by cattle dip. Journal of Environmental Quality, 27, 348–354.

    CAS  Google Scholar 

  • Meharg, A. A. (2004). Arsenic in rice—understanding a new disaster for South-East Asia. Trends in Plant Science, 9, 415–417.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Macnair, M. R. (1990). An altered phosphate-uptake system in arsenate-tolerant holcus-lanatus l. New Phytologist, 116, 29–35.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Rahman, M. D. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Science of the Total Environment, 37, 229–234.

    CAS  Google Scholar 

  • Muňoz, O., Diaz, O. P., Leyton, I., Nuňez, N., Devesa, V., Súňer, M. A., et al. (2002). Vegetables collected in the cultivated Andean area of northern Chile: Total and inorganic arsenic content in raw vegetables. Journal of Agriculture and Food Chemistry, 50, 642–647.

    Article  CAS  Google Scholar 

  • National Food Authority. (1993). Australian Food Standards Code: March 1993. Canberra, Australia: Australian Govt. Publishing Service.

    Google Scholar 

  • Orouke, M. K., Rogan, S. P., Jin, S., & Robertson, G. L. (1999). Spatial distributions of arsenic exposure and mining communities from NHEXAS Arizona. Journal of Exposure Analysis and Environmental Epidemiology, 9, 446–455.

    Article  Google Scholar 

  • Pickering, I. J., Gumaelius, L., Harris, H. H., Prince, R. C., Hirsch, G., Banks, J.-A., et al. (2006). Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environmental Science and Technology, 40, 5010–5014.

    Article  CAS  Google Scholar 

  • Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., & Salt, D. E. (2000). Reduction and coordination of arsenic in Indian Mustard. Plant Physiology, 122, 1171–1177.

    Article  CAS  Google Scholar 

  • Pyles, R. A., & Woolson, E. A. (1982). Quantitation and characterization of arsenic compounds in vegetables grown in arsenic treated soil. Journal of Agriculture and Food Chemistry, 30, 866–870.

    Article  CAS  Google Scholar 

  • Quaghebeur, M., & Rengal, Z. (2004). Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiologia Plantarum, 120, 280–286.

    Article  CAS  Google Scholar 

  • Quaghebeur, M., Rengel, Z., & Smirk, M. (2003). Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy, 18, 128–134.

    Article  CAS  Google Scholar 

  • Queirolo, F., Stegen, S., Restovic, M., Paz, M., Ostapczuk, P., Schwuger, M. J., et al. (2000). Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Science of the Total Environment, 255, 75–84.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Schmoger, M. E. V., Oven, M., & Grill, E. (2000). Detoxification of arsenic by phytochelatins in plants. Plant Physiology, 122, 793–801.

    Article  CAS  Google Scholar 

  • Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., et al. (1999). A market basket survey of inorganic arsenic in food. Food Chemistry and Toxicology, 37, 839–846.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1999). Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. Journal of Environmental Quality, 28, 1719–1726.

    CAS  Google Scholar 

  • Smith, E., Smith, J., & Naidu, R. (2006). Distribution and nature of arsenic along former railway corridors of South Australia. Science of the Total Environment, 363, 175–182.

    Article  CAS  Google Scholar 

  • Tlustoš, P., Goessler, W., Száková, J., & Balík, J. (2002). Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Applied Organometallic Chemistry, 16, 216–220.

    Article  CAS  Google Scholar 

  • Van den Broeck, K., Vandecasteele, C., & Geuns, J. M. C. (1998). Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for the arsenic contamination. Analytica Chimica Acta, 361, 101–111.

    Article  Google Scholar 

  • Warren, G. P., Alloway, B. J., Lepp, N. W., Singh, B., Bochereau, F. J. M., & Penny, C. (2003). Field trial to assess the uptake of arsenic by vegetables from contaminated soil and soil remediation with iron oxides. Science of the Total Environment, 311, 19–33.

    Article  CAS  Google Scholar 

  • Webb, S. M., Gaillard, J.-F., Ma, L. Q., & Tu, T. (2003). XAS speciation of arsenic in a hyper-accumulating fern. Environmental Science and Technology, 37, 754–760.

    Article  CAS  Google Scholar 

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39, 5531–5540.

    Article  CAS  Google Scholar 

  • Xie, Z. E., & Huang, C. Y. (1998). Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Communications in Soil Science and Plant Analysis, 29, 2471–2477.

    Article  CAS  Google Scholar 

  • Zhao, R., Zhao, M., Wang, H., Taneike, Y., & Zhang, X. (2006). Arsenic speciation in moso bamboo shoot—a terrestrial plant that contains organoarsenic species. Science of the Total Environment, 371, 293–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment for it’s generous research support and the Centre for Environmental Risk Assessment and Remediation at the University of South Australia for laboratory and analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E., Juhasz, A.L. & Weber, J. Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health 31 (Suppl 1), 125–132 (2009). https://doi.org/10.1007/s10653-008-9242-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9242-1

Keywords

Navigation