Skip to main content
Log in

A Fine-Scale k−ε Model for Atmospheric Flow over Heterogeneous Landscapes

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A multi-purpose model for small-scale atmospheric flows over heterogeneous landscapes is being developed. The aim of this research is to build a tool able to predict the dynamical (wind, turbulence) and diffusive (gases, particles) fields over landscapes characterised by heterogeneous plant cover. In its present stage of development the model is based on the numerical integration of neutral atmospheric flow equations, using an energy-dissipation closure scheme and over a domain that may include vegetation layers. Three validation cases of the model are presented: (i) response of the airflow to a change in surface roughness; (ii) airflow within and above a horizontally homogeneous plant canopy; (iii) airflow over two complex forest-to-clearing and clearing-to-forest transitions. All simulations provide results in good agreement with the experimental data, except for turbulent kinetic energy just after a clearing-to-forest transition. This result is not surprising for a statistical k−ε model in a flow region characterised by strong distorsion and intermittent turbulence. However the overall good performance of the model is promising for environmental research at fine scales over heterogeneous landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.W. Detering D. Etling (1985) ArticleTitleApplication of the E−ε turbulence model to the atmospheric boundary layer Boundary-Layer Meteorol 33 113–133

    Google Scholar 

  2. M.R. Raupach R.H. Shaw (1982) ArticleTitleAveraging procedures for flow within vegetation canopies Boundary-Layer Meteorol 22 79–90

    Google Scholar 

  3. S.R. Green (1992) ArticleTitleModelling turbulence air flow in a stand of widely-spaced trees PHOENICS: J. Comp. Fluid Dyn. Applic 5 294–312

    Google Scholar 

  4. J. Liu T.A. Black M.D. Novak (1996) ArticleTitleE-ε modelling of turbulent air flow downwind of a model forest edge Boundary-Layer Meteorol 77 21–44

    Google Scholar 

  5. J.D. Wilson (1988) ArticleTitleA second-order closure model for flow through vegetation Boundary-Layer Meteorol 42 371–392

    Google Scholar 

  6. J.D. Wilson J.J. Finnigan M.R. Raupach (1998) ArticleTitleA first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge Quart. J. Roy. Meteorol. Soc 124 705–732

    Google Scholar 

  7. K.W. Ayotte J.J. Finnigan M.R. Raupach (1999) ArticleTitleA second-order closure for neutrally stratified vegetative canopy flows Boundary-Layer Meteorol 90 189–216

    Google Scholar 

  8. E.F. Bradley (1968) ArticleTitleA micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness Quart. J. Roy. Meteorol. Soc 94 361–379

    Google Scholar 

  9. Y. Brunet J.J. Finnigan M.R. Raupach (1994) ArticleTitleA wind tunnel study of air flow in waving wheat: single-point velocity statistics Boundary-Layer Meteorol 70 95–132

    Google Scholar 

  10. M.R. Raupach E.F. Bradley H. Ghadiri (1987) A Wind Tunnel Investigation into Aerodynamic Effect of Forest Clearings on the Nesting of Abbott’s Booby on Christmas Island Internal report CSIRO Centre for environmental Mechanics Canberra

    Google Scholar 

  11. J.C. Kaimal Finnigan J.J. (1994) Boundary Layer Flows. Their Structure and Measurement Oxford University Press New York Oxford

    Google Scholar 

  12. J.J. Finnigan (1985) The Forest-Atmosphere Interaction: Turbulent Transport in Flexible Plant Canopies B.A. Hutchison, B.B. Hicks Reidel, Dordrecht

    Google Scholar 

  13. M.R. Raupach A.S. Thom (1981) ArticleTitleTurbulence in and above plant canopies Boundary-Layer Meteorol 13 97–129

    Google Scholar 

  14. B.E. Launder D.B. Spalding (1974) ArticleTitleThe numerical computation of turbulent flows Comp. Meth. Appl. Mech. Eng 3 269–289

    Google Scholar 

  15. J.J. Finnigan (2000) ArticleTitleTurbulence in plant canopies Annu. Rev. Fluid Mech 32 519–571

    Google Scholar 

  16. C. Sanz (2003) ArticleTitleA note on k–ε modelling of vegetation canopy air-flows Boundary-Layer Meteorol 108 191–197

    Google Scholar 

  17. W. Weng P.A. Taylor (2003) ArticleTitleOn modelling the one-dimensional atmospheric boundary layer Boundary-Layer Meteorol 107 371–400

    Google Scholar 

  18. K. Khadra S. Parneix P. Angot J. Caltagirone (2000) ArticleTitleFictitious domain approach for numerical modelling of Navier–Stokes equations Int. J. Numer. Meth. Fluids 34 651–684

    Google Scholar 

  19. M. Fortin Glowinski R. (1982) Méthodes de Lagrangien Augmenté; Application à la Résolution Numérique de Problèmes Aux Limites Méthodes Mathématiques de l’Informatique Dunod

    Google Scholar 

  20. S. Patankar (1980) Numerical Heat Transfer and Fluid Flow Hemisphere Publishing Corporation New York

    Google Scholar 

  21. H.A. VanderVorst (1992) ArticleTitleA fast and smoothly converging variant of bi-cg for the solution of non symmetric linear system SIAM J. Sci. Statis. Comut 13 631–644

    Google Scholar 

  22. A.J. Dyer (1974) ArticleTitleA review of flux-profile relationships Boundary-Layer Meteorol 7 363–372

    Google Scholar 

  23. W. Elliott (1992) ArticleTitleThe growth of the atmospheric internal boundary layer Trans. Amer. Geophys. Union 39 1048–1054

    Google Scholar 

  24. M.R. Raupach J.J. Finnigan Y. Brunet (1996) ArticleTitleCoherent eddies and turbulence in vegetation canopies: The mixing-layer analogy Boundary-Layer Meteorol 78 351–382

    Google Scholar 

  25. M.R. Raupach (1989) ArticleTitleA practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies Quart. J. Roy. Meteorol. Soc 115 609–632

    Google Scholar 

  26. J.D. Wilson T. Flesch (1999) ArticleTitleWind and remnant tree sway in forest cutblocks III a windflow model to diagnose spatial variation Agric. For. Meteorol 93 259–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Brunet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foudhil, H., Brunet, Y. & Caltagirone, J.P. A Fine-Scale k−ε Model for Atmospheric Flow over Heterogeneous Landscapes. Environ Fluid Mech 5, 247–265 (2005). https://doi.org/10.1007/s10652-004-2124-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-004-2124-x

Keywords

Navigation