Skip to main content
Log in

Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The response of bacterial isolates from Antarctic sediments to polychlorinated biphenyls (Aroclor 1242 mixture), heavy metal salts (cadmium, copper, mercury and zinc) and antibiotics (ampicillin, chloramphenicol, kanamycin and streptomycin) was investigated. Overall, the ability to growth in the presence of Aroclor 1242 as a sole carbon source was observed for 22 isolates that mainly belonged to Psychrobacter spp. Tolerance to the heavy metals assayed in this study was in the order of Cd > Cu > Zn > Hg and appeared to be strictly related to the metal concentrations, as determined during previous chemical surveys in the same area. With regards to antibiotic assays, the response of the isolates to the tested antibiotics ranged from complete resistance to total susceptibility. In particular, resistances to ampicillin and chloramphenicol were very pronounced in the majority of isolates. Our isolates differently responded to the presence of toxic compounds primarily based on their phylogenetic affiliation and secondarily at strain level. Moreover, the high incidence of resistance either to metal or antibiotics, in addition to the capability to grow on PCBs, confirm that bacteria are able to cope and/or adapt to the occurrence pollutants even in low human-impacted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade S, Poblet A, Scagliola M, Vodopivez C, Curtosi A, Pucci A, Marcovecchio J (2001) Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environ Monit Assess 66:147–158

    Article  CAS  Google Scholar 

  • Bargagli R, Nelli L, Ancora S, Focardi S (1996) Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol 16:13–520

    Article  Google Scholar 

  • Bargagli R, Monaci F, Sanchez-Hernandez JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Progr Ser 169:65–76

    Article  CAS  Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML, Brown JF Jr (1987) Extensive degradation of Aroclors and environmental transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol 53:1094–1102

    CAS  Google Scholar 

  • Caroppo C, Stabili L, Aresta M, Corinaldesi C, Danovaro R (2006) Impact of heavy metals and PCBs on marine picoplankton. Environ Toxicol 21:541–551

    Article  CAS  Google Scholar 

  • Chandy JP (1999) Heavy metal tolerance in chromogenic and non-chromogenic marine bacteria from Arabian Gulf. Environ Monit Assess 59:321–330

    Article  CAS  Google Scholar 

  • Dalla Riva S, Abelmoschi ML, Magi E, Soggia F (2004) The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea - Northern Victoria Land). Chemosphere 56:59–69

    Article  CAS  Google Scholar 

  • De Domenico M, Lo Giudice A, Michaud L, Saitta M, Bruni V (2004) Diesel oil and PCB-degrading bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). Polar Res 23:141–146

    Article  Google Scholar 

  • De Souza M-J, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacterial from Antarctic marine waters. Ecotoxicology 15:379–384

    Article  Google Scholar 

  • Dercová K, Seligová J, Dudásová H, Mikulášová M, Šilhárová K, Tóthová L, Hucko P (2009) Characterization of the bottom sediments contaminated with polychlorinated biphenyls: evaluation of ecotoxicity and biodegradability. Intl Biodet Biodegr 63:440–449

    Article  Google Scholar 

  • Fuoco R, Colombini MP, Abete C (1994) Determination of polychlorobiphenyls in environmental samples from Antarctica. Int J Environ Anal Chem 55:15–25

    Article  CAS  Google Scholar 

  • Fuoco R, Colombini MP, Abete C, Carignani S (1995) Polychlorobiphenyls in sediment, soil and sea water samples from Antarctica. Int J Environ Anal Chem 61:309–318

    Article  CAS  Google Scholar 

  • Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679–690

    Article  CAS  Google Scholar 

  • Giordano R, Lombardi G, Ciaralli L, Beccaloni E, Sepe A, Ciprotti M, Costantini S (1999) Major and trace elements in sediments from Terra Nova Bay, Antarctica. Sci Total Environ 227:29–40

    Article  CAS  Google Scholar 

  • Grotti M, Soggia F, Lagomarsino C, Dalla Riva S, Goessler W, Francesconi KA (2008) Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarc Sci 20:39–51

    Article  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  Google Scholar 

  • Ianni C, Magi E, Soggia F, Rivaro P, Frache R (2010) Trace metal speciation in coastal and off-shore sediments from Ross Sea (Antarctica). Microchem J 96:203–212

    Article  CAS  Google Scholar 

  • Kohler HPE, Kohler-Staub D, Focht DD (1988) Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol 54:1940–1945

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) Mega: molecular evolutionary genetics analysis, version 1.02. The Pennsylvania State University, University Park, Pa 16802

  • Lo Giudice A, Casella P, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2010) Occurrence and characterization of psychrotolerant hydrocarbon–oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol 33:929–943

    Article  Google Scholar 

  • Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012) Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microb Ecol 63:210–223

    Article  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Poll 157:2893–2902

    Article  CAS  Google Scholar 

  • Michaud L, Di Cello F, Brilli M, Fani R, Lo Giudice A, Bruni V (2004) Biodiversity of cultivable Antarctic psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea). FEMS Microbiol Lett 230:63–71

    Article  CAS  Google Scholar 

  • Michaud L, Di Marco G, Bruni V, Lo Giudice A (2007) Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Poll Bull 54:1754–1761

    Article  CAS  Google Scholar 

  • Montone RC, Taniguchi S, Weber RR (2001) Polychlorinated biphenyls in marine sediments of Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 42:611–614

    Article  CAS  Google Scholar 

  • Montone RC, Taniguchi S, Boian C, Weber RR (2005) PCBs and chlorinated pesticides (DDTs, HCHs and HCB) in the atmosphere of the southwest Atlantic and Antarctic oceans. Mar Poll Bull 50:778–786

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Selvin J, Shanmugha PS, Kiran GS, Thangavelua T, Bai NS (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tumeo MA, Guinn DA (1997) Evaluation of bioremediation in cold regions. J Cold Reg Engin 11:221–231

    Article  CAS  Google Scholar 

  • Vaz-Moreira I, Nunes OC, Manaia CM (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 77:5697–5706

    Article  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–259

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from PNRA (Programma Nazionale di Ricerche in Antartide), Italian Ministry of Education and Research (Research Project PNRA 2004/1.6), and from MNA (Museo Nazionale dell’Antartide).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Lo Giudice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo Giudice, A., Casella, P., Bruni, V. et al. Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology 22, 240–250 (2013). https://doi.org/10.1007/s10646-012-1020-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-1020-2

Keywords

Navigation