Skip to main content

Advertisement

Log in

Peloruside A inhibits microtubule dynamics in a breast cancer cell line MCF7

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Peloruside A (PelA), a novel microtubule-stabilizing agent and potential anti-cancer drug, isolated from the marine sponge Mycale hentscheli, binds to a distinct, non-taxoid binding site on tubulin. Using live-cell confocal microscopy, the effects of PelA on microtubule dynamics were quantified in a human breast adenocarcinoma cell line (MCF7) stably expressing GFP-α-tubulin. Changes in microtubule length were tracked over time in cells treated with PelA concentrations ranging from 3.8–100 nM. As with other microtubule-targeting drugs like paclitaxel and epothilone B, microtubule dynamics were suppressed in a concentration-dependent manner. At the PelA IC50 concentrations for cell proliferation (3.8 nM) and G2/M block (25 nM), PelA inhibited dynamicity by 23% and 45%, respectively. At 25 nM PelA, effects included a 24% and 41% reduction in average growth rate and growth length, respectively. Additionally, the total time spent in pause increased by 53% and coincided with a 36% reduction in the average amount of time spent growing. Rescue and catastrophe frequencies were not significantly affected by PelA, except for length-based catastrophe (67% increase). The results provide further insight into PelA’s unique mode of stabilization and contribute to our understanding of how microtubule-targeting agents exert their anti-mitotic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EpoB:

epothilone B

MSA:

microtubule stabilizing agent

MTA:

microtubule targeting agent

PelA:

peloruside A

References

  1. West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65:445–449

    Article  PubMed  CAS  Google Scholar 

  2. Hood KA, West LM, Rouwé B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res 62:3356–3360

    PubMed  CAS  Google Scholar 

  3. Gaitanos TN, Buey RM, Díaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64:5063–5067

    Article  PubMed  CAS  Google Scholar 

  4. Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC (2008) A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 378:1016–1030

    Article  PubMed  CAS  Google Scholar 

  5. Pineda O, Farras J, Maccari L, Manetti F, Botta M, Vilarrasa J (2004) Computational comparison of microtubule-stabilising agents laulimalide and peloruside with Taxol and colchicine. Bioorg Med Chem Lett 14:4825–4829

    Article  PubMed  CAS  Google Scholar 

  6. Jiménez-Barbero J, Canales A, Northcote PT, Buey RM, Andreu JM, Díaz JF (2006) NMR determination of the bioactive conformation of peloruside A bound to microtubules. J Am Chem Soc 128:8757–8765

    Article  PubMed  Google Scholar 

  7. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  PubMed  CAS  Google Scholar 

  8. Singh P, Rathinasamy K, Mohan R, Panda D (2008) Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 60:368–375

    Article  PubMed  CAS  Google Scholar 

  9. Meyer C, Ferguson D, Krauth M, Wick M, Northcote P (2006) RTA 301 (peloruside): a novel microtubule stabilizer with potent in vivo activity against lung cancer and resistant breast cancer. 18th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Prague, Czech Republic, November 7–10, 2006, Abstr No. 639. (for pdf, see: (http://www.sciencedirect.com/science/article/B75GT-4MMF4DM-ST/2/901656de391d50b1ced2b7ad843d922a) (doi:10.1016/S1359-6349(06)70644-9))

  10. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  11. Nogales E (2001) Structural insights into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420

    Article  PubMed  CAS  Google Scholar 

  12. Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  PubMed  CAS  Google Scholar 

  13. Janosi IM, Chretien D, Flyvbjerg H (2002) Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys J 83:1317–1330

    Article  PubMed  CAS  Google Scholar 

  14. Panda D, Miller H, Banerjee A, Ludueña R, Wilson L (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Cell Biol 91:11358–11362

    CAS  Google Scholar 

  15. Honore S, Kamath K, Braguer D, Wilson L, Briand C, Jordan MA (2003) Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol Cancer Ther 2:1303–1311

    PubMed  CAS  Google Scholar 

  16. Wilmes A, Bargh K, Kelly C, Northcote PT, Miller JH (2007) Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharmaceut 4:269–280

    Article  CAS  Google Scholar 

  17. Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63:6026–6031

    PubMed  CAS  Google Scholar 

  18. Dhamodharan R, Wadsworth P (1995) Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins. J Cell Sci 108:1679–1689

    PubMed  CAS  Google Scholar 

  19. Yvon A-MC, Wadsworth P, Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10:947–959

    PubMed  CAS  Google Scholar 

  20. Brandt R, Lee G (1994) Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein. Cell Motil Cytoskelet 28:143–154

    Article  CAS  Google Scholar 

  21. Honore S, Kamath K, Braguer D, Horwitz SB, Wilson L, Briand C, Jordan MA (2004) Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 64:4957–4964

    Article  PubMed  CAS  Google Scholar 

  22. Buey R, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu J, Díaz F (2005) Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 12:1269–1279

    Article  PubMed  CAS  Google Scholar 

  23. Turner PF, Margolis RL (1984) Taxol-induced bundling of brain-derived microtubules. J Cell Biol 99:940–946

    Article  PubMed  CAS  Google Scholar 

  24. Schulze E, Kirschner M (1987) Dynamic and stable populations of microtubules in cells. J Cell Biol 104:277–288

    Article  PubMed  CAS  Google Scholar 

  25. Chapin SJ, Bulinski JC, Gundersen G (1991) Microtubule bundling in cells. Nature 349:24–24

    Article  PubMed  CAS  Google Scholar 

  26. Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6:1215–1229

    PubMed  CAS  Google Scholar 

  27. Amos LA (2004) Microtubule structure and its stabilisation. Org Biomol Chem 2:2153–2160

    Article  PubMed  CAS  Google Scholar 

  28. Wade R (2007) Microtubules: an overview. In: Zhou J (ed) Microtubule protocols, vol. 137. Humana Press, Totowa, pp 1–16

    Chapter  Google Scholar 

  29. Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Pous C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322:1353–1356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Cancer Society of New Zealand and Victoria University of Wellington and a postgraduate scholarship from the Genesis Oncology Trust to A. Chan. We thank Daniel Logan and Cameron Jack for their assistance in setting up the necessary software for measuring microtubule dynamics, and Sushila Pillai for her invaluable assistance using the confocal microscope. We also thank Paraskevi Giannakakou for supplying the GFP-tubulin transfected cells and her constructive feedback regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A., Andreae, P.M., Northcote, P.T. et al. Peloruside A inhibits microtubule dynamics in a breast cancer cell line MCF7. Invest New Drugs 29, 615–626 (2011). https://doi.org/10.1007/s10637-010-9398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9398-2

Keywords

Navigation