Skip to main content

Advertisement

Log in

Allostasis in Nonalcoholic Fatty Liver Disease: Implications for Risk Assessment

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Allostasis, a concept of anticipatory physiological regulation in response to external and internal challenges, was originally developed in the context of neuroendocrinology and behavioral medicine. Allostasis preserves function under changing conditions by abandoning physiological set points and developing new ones. Allostatic load refers to the aggregate effect of adaptation throughout life, and corresponds to the wear and tear associated with this process. In response to chronic stress, allostatic load may accumulate faster than expected if sustained activation of regulatory systems exceeds optimum operating ranges; this results in increased risk of disease. Used in a broader sense, the allostatic model of adaptive responses, trade-offs, feed-forward cycles, and collateral damage provides a framework for assessing the involvement of environmental–genetic interactions and co-morbidities in the course of chronic disease and developing a comprehensive score for personalized risk prediction. The utility of this approach is illustrated for nonalcoholic fatty liver disease, a prevalent condition with common and less common outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernard C. Leçons sur les Propriétés Physiologiques et les Altérations Pathologiques des Liquides de l’Organisme. Paris: Baillière; 1859.

    Book  Google Scholar 

  2. Cannon WB. Organization for physiological homeostasis. Physiol Rev. 1929;9:399–431.

    Google Scholar 

  3. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 1946;6:117–230.

    Article  PubMed  CAS  Google Scholar 

  4. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2011;106:5–15.

    Article  PubMed  Google Scholar 

  5. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, eds. Handbook of life stress, cognition, and health. New York: Wiley; 1988.

    Google Scholar 

  6. Power ML, Schulkin J. Maternal obesity, metabolic disease, and allostatic load. Physiol Behav. 2012;106:22–28.

    Article  PubMed  CAS  Google Scholar 

  7. Seeman T, Epel E, Gruenewald T, Karlamangla A, McEwen BS. Socio-economic differentials in peripheral biology: cumulative allostatic load. Ann N Y Acad Sci. 2010;1186:223–239.

    Article  PubMed  Google Scholar 

  8. George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav. 2011;106:58–64.

    Article  PubMed  Google Scholar 

  9. Csete M, Doyle J. Bow ties, metabolism and disease. Trends Biotechnol. 2004;22:446–450.

    Article  PubMed  CAS  Google Scholar 

  10. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–2101.

    Article  PubMed  CAS  Google Scholar 

  11. Dallman MF. Modulation of stress responses: how we cope with excess glucocorticoids. Exp Neurol. 2007;206:179–182.

    Article  PubMed  CAS  Google Scholar 

  12. Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45–62.

    Article  PubMed  CAS  Google Scholar 

  13. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.

    Article  PubMed  CAS  Google Scholar 

  14. Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in nonalcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.

    Article  PubMed  Google Scholar 

  15. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–468.

    Article  PubMed  Google Scholar 

  16. Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–433.

    Article  PubMed  Google Scholar 

  17. Yeh MM, Daniel HD, Torbenson M. Hepatitis C-associated hepatocellular carcinomas in non-cirrhotic livers. Mod Pathol. 2010;23:276–283.

    Article  PubMed  CAS  Google Scholar 

  18. Nzeako UC, Goodman ZD, Ishak KG. Hepatocellular carcinoma in cirrhotic and noncirrhotic livers. A clinico-histopathologic study of 804 North American patients. Am J Clin Pathol. 1996;105:65–75.

    PubMed  CAS  Google Scholar 

  19. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta. 2010;1801:338–349.

    Article  PubMed  CAS  Google Scholar 

  20. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond). 2010;34:S4–S17.

    Article  Google Scholar 

  21. van der Poorten D, Milner KL, Hui J, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008;48:449–457.

    Article  PubMed  Google Scholar 

  22. Sorensen TI, Virtue S, Vidal-Puig A. Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects? Biochim Biophys Acta. 2010;1801:400–404.

    Article  PubMed  CAS  Google Scholar 

  23. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829–838.

    Article  PubMed  CAS  Google Scholar 

  24. Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 2010;1801:209–214.

    Article  PubMed  CAS  Google Scholar 

  25. Choi SS, Diehl AM. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol. 2008;19:295–300.

    Article  PubMed  CAS  Google Scholar 

  26. Lodhi IJ, Wei X, Semenkovich CF. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab. 2011;22:1–8.

    Article  PubMed  CAS  Google Scholar 

  27. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13:374–384.

    Article  PubMed  CAS  Google Scholar 

  28. Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134:568–576.

    Article  PubMed  CAS  Google Scholar 

  29. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118:316–332.

    Article  PubMed  CAS  Google Scholar 

  30. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320:1492–1496.

    Article  PubMed  CAS  Google Scholar 

  31. Dong H, Czaja MJ. Regulation of lipid droplets by autophagy. Trends Endocrinol Metab. 2011;22:234–240.

    Article  PubMed  CAS  Google Scholar 

  32. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–285.

    Article  PubMed  CAS  Google Scholar 

  33. Baffy G. Uncoupling protein-2 and non-alcoholic fatty liver disease. Front Biosci. 2005;10:2082–2096.

    Article  PubMed  CAS  Google Scholar 

  34. Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123–158.

    Article  PubMed  CAS  Google Scholar 

  35. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26:2166–2176.

    Article  PubMed  CAS  Google Scholar 

  36. Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med. 2011;3:619–627.

    Article  PubMed  Google Scholar 

  37. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2010;12:56–68.

    Article  Google Scholar 

  38. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124.

    Article  PubMed  Google Scholar 

  39. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA. 2008;105:9880–9885.

    Article  PubMed  CAS  Google Scholar 

  40. Seeman TE, Singer BH, Rowe JW, Horwitz RI, McEwen BS. Price of adaptation–allostatic load and its health consequences. MacArthur studies of successful aging. Arch Intern Med. 1997;157:2259–2268.

    Article  PubMed  CAS  Google Scholar 

  41. Seeman TE, Crimmins E, Huang MH, et al. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Soc Sci Med. 2004;58:1985–1997.

    Article  PubMed  Google Scholar 

  42. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–1112.

    Article  PubMed  CAS  Google Scholar 

  43. Abu-Asab MS, Chaouchi M, Alesci S, et al. Biomarkers in the age of omics: time for a systems biology approach. OMICS. 2011;15:105–112.

    Article  PubMed  CAS  Google Scholar 

  44. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–1465.

    Article  PubMed  CAS  Google Scholar 

  45. Chalasani N, Guo X, Loomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology. 2010;139:1567–1576, 1576 e1561–1566.

    Google Scholar 

  46. Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis. 2011;31:128–146.

    Article  PubMed  CAS  Google Scholar 

  47. Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820.

    Article  PubMed  CAS  Google Scholar 

  48. Sookoian S, Rosselli MS, Gemma C, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000.

    Article  PubMed  CAS  Google Scholar 

  49. Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA. 2000;97:8856–8861.

    Article  PubMed  CAS  Google Scholar 

  50. Snowdon VK, Fallowfield JA. Models and mechanisms of fibrosis resolution. Alcohol Clin Exp Res. 2011;35:794–799.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work received no grants or other financial support. The author would like to acknowledge the useful discussions on this work with Dr. Joseph Loscalzo.

Conflict of interest

The author discloses no financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Baffy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baffy, G. Allostasis in Nonalcoholic Fatty Liver Disease: Implications for Risk Assessment. Dig Dis Sci 58, 302–308 (2013). https://doi.org/10.1007/s10620-012-2344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2344-8

Keywords

Navigation