Skip to main content

Advertisement

Log in

Antitumoral Activity of Rapamycin Mediated Through Inhibition of HIF-1alpha and VEGF in Hepatocellular Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Rapamycin (RAPA) inhibits tumor growth and angiogenesis in hepatocellular carcinoma (HCC). The molecular mechanism underlying the antitumoral effects of RAPA remains unclear. Here we established a chemical-induced rat HCC model to investigate the signaling pathways mediating RAPA’s antitumor activity. We found that RAPA exposure significantly diminished tumor growth, angiogenesis, and metastasis of HCC. Meanwhile, the antitumor drug dramatically decreased expression of HIF-1alpha and VEGF, either at mRNA or protein levels. Moreover, the low-dose of RAPA (1.5 mg/kg/day) was effective enough to markedly inhibit tumor progression of HCC. The preliminary results suggested that the antitumoral effects of RAPA might be at least partially mediated through downregulation of HIF-1alpha and VEGF, and low-dose RAPA-based regimens exhibited a promising future in treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CsA:

Cyclosporine A

DEN:

Diethylnitrosamine

HCC:

Hepatocellular carcinoma

HE:

Haematoxylin and eosin

HIF-1alpha:

Hypoxia-inducible factor 1 alpha

mTOR:

Mammalian target of rapamycin

MVD:

Microvessel density

NMOR:

N-nitrosomorpholine

RAPA:

Rapamycin

SD:

Spreque–Dawley

VEGF:

Vascular endothelial growth factor

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Yu MC, Yuan JM. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology. 2004;127:S72–S78. doi:10.1016/j.gastro.2004.09.018.

    Article  PubMed  CAS  Google Scholar 

  3. Wang Z, Zhou J, Fan J, et al. Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res. 2008;14:5124–5130. doi:10.1158/1078-0432.CCR-07-4774.

    Article  PubMed  CAS  Google Scholar 

  4. Huynh H, Chow PK, Palanisamy N, et al. Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol. 2008;49:52–60. doi:10.1016/j.jhep.2008.02.022.

    Article  PubMed  CAS  Google Scholar 

  5. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22. doi:10.1016/j.ccr.2007.05.008.

    Article  PubMed  CAS  Google Scholar 

  6. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–537. doi:10.1093/annonc/mdi113.

    Article  PubMed  CAS  Google Scholar 

  7. Bu X, Le C, Jia F, et al. Synergistic effect of mTOR inhibitor rapamycin and fluorouracil in inducing apoptosis and cell senescence in hepatocarcinoma cells. Cancer Biol Ther. 2008;7:392–396.

    Article  PubMed  CAS  Google Scholar 

  8. Semela D, Piguet AC, Kolev M, et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol. 2007;46:840–848. doi:10.1016/j.jhep.2006.11.021.

    Article  PubMed  CAS  Google Scholar 

  9. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–135. doi:10.1038/nm0202-128.

    Article  PubMed  CAS  Google Scholar 

  10. Basu A, Contreras AG, Datta D, et al. Overexpression of vascular endothelial growth factor and the development of post-transplantation cancer. Cancer Res. 2008;68:5689–5698. doi:10.1158/0008-5472.CAN-07-6603.

    Article  PubMed  CAS  Google Scholar 

  11. von Marschall Z, Cramer T. Höcker M, Finkenzeller G, Wiedenmann B, Rosewicz S: Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut. 2001;48:87–96. doi:10.1136/gut.48.1.87.

    Article  Google Scholar 

  12. Lee TK, Poon RT, Yuen AP, et al. Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin Cancer Res. 2006;12:6910–6919. doi:10.1158/1078-0432.CCR-06-0489.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshino H, Futakuchi M, Cho YM, et al. Modification of an in vivo lung metastasis model of hepatocellular carcinoma by low dose N-nitrosomorpholine and diethylnitrosamine. Clin Exp Metastasis. 2005;22:441–447. doi:10.1007/s10585-005-2807-9.

    Article  PubMed  CAS  Google Scholar 

  14. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    PubMed  CAS  Google Scholar 

  15. Zimmerman MA, Trotter JF, Wachs M, et al. Sirolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma. Liver Transpl. 2008;14:633–638. doi:10.1002/lt.21420.

    Article  PubMed  Google Scholar 

  16. Mizukami Y, Kohgo Y, Chung DC. Hypoxia Inducible Factor-1 Independent Pathways in Tumor Angiogenesis. Clin Cancer Res. 2007;13:5670–5674. doi:10.1158/1078-0432.CCR-07-0111.

    Article  PubMed  CAS  Google Scholar 

  17. Mizukami Y, Fujiki K, Duerr EM, et al. Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J Biol Chem. 2006;281:13957–13963. doi:10.1074/jbc.M511763200.

    Article  PubMed  CAS  Google Scholar 

  18. Cao Y, Li CY, Moeller BJ, et al. Observation of incipient tumor angiogenesis that is independent of hypoxia and hypoxia inducible factor-1 activation. Cancer Res. 2005;65:5498–5505. doi:10.1158/0008-5472.CAN-04-4553.

    Article  PubMed  CAS  Google Scholar 

  19. Mizukami Y, Li J, Zhang X, Zimmer MA, Iliopoulos O, Chung DC. Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res. 2004;64:1765–1772. doi:10.1158/0008-5472.CAN-03-3017.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka H, Yamamoto M, Hashimoto N, et al. Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis. Cancer Res. 2006;66:11263–11270. doi:10.1158/0008-5472.CAN-06-1699.

    Article  PubMed  CAS  Google Scholar 

  21. Yasuda S, Arii S, Mori A, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol. 2004;40:117–123. doi:10.1016/S0168-8278(03)00503-8.

    Article  PubMed  CAS  Google Scholar 

  22. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397:530–534. doi:10.1038/17401.

    Article  PubMed  CAS  Google Scholar 

  23. Iurlaro M, Vacca A, Minischetti M, et al. Antiangiogenesis by cyclosporine. Exp Hematol. 1998;26:1215–1222.

    PubMed  CAS  Google Scholar 

  24. Aeder SE, Martin PM, Soh JW, Hussaini IM. PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene. 2004;23:9062–9069. doi:10.1038/sj.onc.1208093.

    Article  PubMed  CAS  Google Scholar 

  25. Leseux L, Laurent G, Laurent C, et al. PKC zeta mTOR pathway: a new target for rituximab therapy in follicular lymphoma. Blood. 2008;111:285–291. doi:10.1182/blood-2007-04-085092.

    Article  PubMed  CAS  Google Scholar 

  26. Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D. Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol. 2007;43:754–766. doi:10.1016/j.yjmcc.2007.09.015.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (30772097), Anhui Provincial Natural Science Foundation (070413073), the Science and Technological Fund of Anhui Province for Outstanding Youth (08040106818), the Science and Technology Key Project of Anhui Province (07010302193), and the Anhui Provincial “115” Industrial Innovation Program. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge-Liang Xu.

Additional information

Wei Wang and Wei-Dong Jia contributed equally to this work as co–first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Jia, WD., Xu, GL. et al. Antitumoral Activity of Rapamycin Mediated Through Inhibition of HIF-1alpha and VEGF in Hepatocellular Carcinoma. Dig Dis Sci 54, 2128–2136 (2009). https://doi.org/10.1007/s10620-008-0605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0605-3

Keywords

Navigation