Skip to main content
Log in

Effects of Hyperhomocysteinemia on Non-Adrenergic Non-Cholinergic Relaxation in Isolated Rat Duodenum

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The effect of hyperhomocysteinemia induced by pretreatment with methionine 12 weeks prior to the study on the responses induced by γ-aminobutyric acid (GABA), electrical field stimulation (EFS), and ATP have been evaluated in isolated rat duodenum. In the presence of adrenergic and cholinergic blockade, EFS (60 V, 1 ms, 1–3 Hz) induced frequency-dependent relaxations of the preparation. GABA and ATP also caused submaximal relaxation of the rat duodenum. The relaxations induced by GABA, EFS, and ATP were not significantly changed in duodenal tissues from hyperhomocysteinemic rats compared with control rats. GABA- and EFS-induced relaxations were inhibited by N-nitro-l-arginine methyl ester (L-NAME; 3 × 10−4 M) in both hyperhomocysteinemic and control rats. On the other hand, L-NAME incubation did not affect ATP-induced relaxation. These results suggest that hyperhomocysteinemia does not cause an important impairment on non-adrenergic non-cholinergic innervation of the rat duodenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Bree A, Verschuren M, Kromhout D, Kluıjtmans AJ, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  2. Kang SS, Wong PWK, Malinow MR (1992) Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann Rev Nutr 12:279–298

    Article  CAS  Google Scholar 

  3. Perna AF, Castaldo P, Ingrosso D, De Santo NG (1999) Homocysteine, a new cardiovascular risk factor, is also a powerful uremic toxin. J Nephrol 12:230–240

    PubMed  CAS  Google Scholar 

  4. Verklej-Hagoort A, Verlinde M, Ursem N (2006) Maternal hyperhomocysteine is a risk factor for congenital heart disease. BJOG 113:1412–1418

    Google Scholar 

  5. Parsons RB, Waring RH, Ramsden DB, Williams AC (1998) In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology 19(4–5):599–603

    PubMed  CAS  Google Scholar 

  6. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostıno RB, Wılson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  7. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29

    Article  PubMed  CAS  Google Scholar 

  8. Ungvari Z, Pacher P, Rischak K, Szollar L, Koller A (1999) Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocysteinemia. Arterioscler Thromb Vasc Biol 19(8):1899–1904

    PubMed  CAS  Google Scholar 

  9. Jones RWA, Jeremy JY, Koupparis A, Persad R, Shukla N (2005) Cavernosal dysfunction in a rabbit model of hyperhomocysteinemia. Br J Urol 95:125–130

    Google Scholar 

  10. Tasatargıl A, Sadan G, Golbası I, Karasu E, Turkay C (2004) Effects of short-term exposure to homocysteine on vascular responsiveness of human internal mammary artery. J Cardiovasc Pharmacol 43:692–697

    Article  PubMed  Google Scholar 

  11. Tasatargıl A, Sadan G, Karasu E (2007) Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulm Pharmacol Ther 20(3):265–272

    Article  PubMed  Google Scholar 

  12. Tasatargıl A, Sadan G, Karasu E, Ozdem S (2006) Changes in atrium and thoracic aorta reactivity to adenosinergic and adrenergic agonists in experimental hyperhomocysteinemia. J Cardiovasc Pharmacol 47:673–679

    Article  PubMed  Google Scholar 

  13. Glaskow I, Mattar K, Krantis A (1998) Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Gastrointest Liver Physiol 38:G889–G896

    Google Scholar 

  14. Manzini S, Maggi CA, Meli A (1986) Pharmacological evidence that at least two different non-adrenergic non-cholinergic inhibitory systems are present in the rat small intestine. Eur J Pharmacol 123:229–236

    Article  PubMed  CAS  Google Scholar 

  15. Matharu MS, Hollingsworth M (1992) Purinoreceptors mediating relaxation and spasm in the rat gastric fundus. Br J Pharmacol 106:395–403

    PubMed  CAS  Google Scholar 

  16. Matusak A, Bauer V (1986) Effect of desensitization induced by adenosine 5′-triphosphate, substance P, bradykinin, serotonin, GABA and endogenous noncholinergic–nonadrenergic transmitter in the guinea-pig ileum. Eur J Pharmacol 126:199–209

    Article  PubMed  CAS  Google Scholar 

  17. Mercier-Parot L, Tuchmann-Duplessis H (1973) Abortifactent and teratogenic effect of suramin, a trypanocide. C R Seances Soc Biol Ses Filiales 167:1518–1522

    CAS  Google Scholar 

  18. Windscheif U, Pfaff O, Ziganshin AU, Hoyle CHV, Baumert HG, Mutschler E, Burnstock G, Lambrecht G (1995) Inhibitory action of PPADS on relaxant responses to adenine nucleotides or electrical field stimulation in guinea-pig taenia coli and rat doudenum. Br J Pharmacol 115:1509–1517

    PubMed  CAS  Google Scholar 

  19. Duarte IDG, Lorezetti BB, Ferreira SH (1990) Acetylcholine induces peripheral analgesia by the release of nitric oxide. In: Moncada S, Higgs EA (eds) The nitric oxide from l-arginine: a biorgulatory system. Elsevier, Amsterdam, p 165

    Google Scholar 

  20. Rand JM (1992) Nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol 19:147–169

    Article  PubMed  CAS  Google Scholar 

  21. Bredt DS, Hwang PM, Synder SH (1990) Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature 347:768–770

    Article  PubMed  CAS  Google Scholar 

  22. Belai A, Schmidt HHHW, Hoyle CHV (1992) Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett 143:60–64

    Article  PubMed  CAS  Google Scholar 

  23. Martins SR, Bicudo R, Oliveira RB, Ballejo G (1993) Evidence for the partipicipation of the l-arginine–nitric oxide pathway in neurally induced relaxation of the isolated rat duodenum. Braz J Med Biol Res 26:1325–1335

    PubMed  CAS  Google Scholar 

  24. Nichols K, Krantis A, Staines W (1992) Histochemical localization of nitric oxide-synthesizing neurons and vascular sides in the guinea-pig intestine. Neuroscience 51:791–799

    Article  PubMed  CAS  Google Scholar 

  25. Nichols K, Staines W, Krantis A (1993) Nitric oxide synthase distribution in rat intestine: a histochemical analysis. Gastroenterology 105:1651–1661

    PubMed  CAS  Google Scholar 

  26. Nichols K, Staines W, Wu-Y JY, Krantis A (1995) Immonupositive GABAergic neural sides display nitric oxide synthase-releated NADPH diaphorase activitiy in the human colon. J Auton Nerv Syst 50:253–262

    Article  PubMed  CAS  Google Scholar 

  27. Jessen KR, Mirsky R, Densson ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281:71–74

    Article  PubMed  CAS  Google Scholar 

  28. Maggi CA, Manzini S, Meli A (1984) Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic–noncholinergic neurons. J Auton Pharmacol 4:77–85

    Article  PubMed  CAS  Google Scholar 

  29. Krantis A, Costa M, Furness JB, Orbach J (1980) γ-Aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. Eur J Pharmacol 141:461–468

    Article  Google Scholar 

  30. Tonini M, Crema A, Frigo GM, Rizzi CA, Manzo L, Candura SM, Onori L (1989) An in vitro study of the relation between GABA receptor function and propulsive motility in the distal colon of the rabbit. Br J Pharmacol 98:1109–1118

    PubMed  CAS  Google Scholar 

  31. Boeckxstaens GE, Pelckmans PA, Rampart M, Ruytjens IF, Verbeuren TJ, Herman AG, Van Maercke YM (1990) GABAA receptor mediated stimulation of non-adrenergic non-cholinergic neurons in the dog ileocolonic junction. Br J Pharmacol 101:460–464

    PubMed  CAS  Google Scholar 

  32. Krantis A, Mattar K, Glasgow I (1998) Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneouys relaxations. Am J Physiol Gastrointest Liver Physiol 275:897–903

    Google Scholar 

  33. Gustafsson B, Delbro D (1993) Tonic inhibition of small intestinal motility by nitric oxide. J Auton Nerv Syst 44:179–187

    Article  PubMed  CAS  Google Scholar 

  34. Kaputlu İ, Özdem S, Şadan G, Gökalp O (1999) Effects of diabetes on non-adrenergic, non-cholinergic relaxation induced by GABA and electrical stimulation in the rat isolated duodenum. Clin Exp Pharm Physiol 26:724–728

    Article  CAS  Google Scholar 

  35. Stampfer MJ, Malinow MR (1995) Can lowering homocysteine levels reduce cardiovascular risk? N Engl J Med 332:328–329

    Article  PubMed  CAS  Google Scholar 

  36. Verhoef P, Kok FJ, Kruyssen DACM, Schouten EG, Witteman JCM, Grobbee DE, Ueland PM, Refsum H (1997) Plasma total homocysteine, B vitamins, of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 17:989–995

    PubMed  CAS  Google Scholar 

  37. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  38. Boysen G, Brander T, Christensen H, Gideon R, Truelsen T (2003) Homocysteine and risk of recurrent stroke. Stroke 34:1258–1261

    Article  PubMed  CAS  Google Scholar 

  39. Vollset SE, Refsum H, Tverdal A, Nygard O, Nordrehaug J, Tell GS, Ueland PM (2001) Plasma total homocysteine and cardiovascular and non-cardiovascular mortality: the Hordalans homocysteine study. Am J Clin Nutr 74:130–136

    PubMed  CAS  Google Scholar 

  40. Malinow MR, Kang SS, Taylor LM, Wong PWK, Coull B, Inahara T, Mukerjee D, Sexton G, Upson B (1989) Prevalence of hyperhomocyteinemia in patients with peripheral arterial occlusive disease. Circulation 79:1180–1188

    PubMed  CAS  Google Scholar 

  41. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 313:709–715

    Google Scholar 

  42. Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol Lond 182:504–526

    PubMed  CAS  Google Scholar 

  43. Burnstock G, Campbell G, Bennett M, Holman ME (1963) Inhibition of the smooth muscle of the taenia coli. Nature 200:581–582

    Article  PubMed  CAS  Google Scholar 

  44. Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–G392

    PubMed  CAS  Google Scholar 

  45. Takahashı T (2003) Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38:421–430

    Article  PubMed  Google Scholar 

  46. Allescher HD, Lu S, Daniel EE, Classen M (1993) Nitric oxide as a putative nonadrenergic noncholinergic inhibitory neurotransmitter in the opossum sphincter of Oddi. Can J Physiol Pharmacol 71:525–530

    PubMed  CAS  Google Scholar 

  47. Mourelle M, Guarner F, Moncada S, Malagelada JR (1993) The arginine/nitric oıxide pathway modulates sphincter of Oddi motor activity in guinea pigs and rabbits. Gastroenterology 105:1299–1305

    PubMed  CAS  Google Scholar 

  48. Szilvassy Z, Nagy I, Szilvassy J, Jakab I, Csati S, Lonovics J (1996) Impaired nitrergic relaxation of the sphincter of Oddi of hyperlipidemic rabbits. Eur J Pharmacol 301:R17–R18

    Article  PubMed  CAS  Google Scholar 

  49. Cattaneo M, Vecchi M, Zighetti ML, Saibeni S, Martinelli I, Omodei P, Mannucci PM, de Francis R (1998) High prevalence of hyperhomocysteinemia in patients with inflammatory bowel disease: a pathogenic link thromboembolic complications? Thromb Haemost 80:542–545

    PubMed  CAS  Google Scholar 

  50. Oldenburg B, Fijnheer R, van der Griend R, vanBerge-Henegouwen GP, Koningsberger JC (2000) Homocysteine in inflammatory bowel disease: a risk factor for thromboembolic complications? Am J Gastroenterol 95:2825–2830

    Article  PubMed  CAS  Google Scholar 

  51. Romagnoulo J, Fedorak RN, Dias VC, Bamforth F, Teltscher M (2001) Hyperhomocysteinemia and inflammatory bowel disease: prevalence and predictors in cross-sectional study. Am J Gastroenterol 96:2143–2149

    Article  Google Scholar 

  52. Koutroubakis LE, Dilaveraki E, Vlachonikolis IG, Vardas E, Vrentzos G, Ganotakis E (2000) Hyperhomocystenemia in Greek patients with inflammatory bowel disease. Dig Dis Sci 45:2347–2351

    Article  PubMed  CAS  Google Scholar 

  53. Papa A, De-Stefano V, Danese S, Chiusolo P, Persichilli S, Casorelli I, Zappacosta B, Gıardina B, Gasbarrini A, Leone G, Gasbarrini G (2001) Hyperhomocysteinemia and prevalence of polymorphism of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. Am J Gastroenterol 96:2677–2682

    Article  PubMed  CAS  Google Scholar 

  54. Kaputlu I, Sadan G (1996) Evidence that nitric oxide mediates non-adrenergic non-cholinergic relaxation induced by GABA and electrical stimulation in the rat isolated duodenum. J Auton Pharmacol 16:177–182

    Article  PubMed  CAS  Google Scholar 

  55. Maggi CA, Manzini S, Mell A (1984) Evidence that GABAA receptors mediate relaxation of rat deoudenum by activating intramural nonadrenergic- noncholinergic neurons. J Auton Pharmacol 4:77–85

    Article  PubMed  CAS  Google Scholar 

  56. Manzini S, Maggi CA, Mell A (1985) Further evidence for involvement of adenosine-5′-triphosphate in non-adrenergic non-cholinergic relaxation of the isolated rat duodenum. Eur J Pharmacol 86:9–17

    Google Scholar 

  57. Ozdem SS, Sadan G (1999) Impairment of GABA-mediated contractions of rat isolated ileum by experimental diabetes. Pharmacology 59:165–170

    Article  PubMed  CAS  Google Scholar 

  58. Park KJ, Baker SA, Cho SY, Sanders KM, Koh DS (2005) Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol 144:1126–1137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the support provided by the Akdeniz University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edibe Karasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasu, E., Şadan, G. & Tasatargil, A. Effects of Hyperhomocysteinemia on Non-Adrenergic Non-Cholinergic Relaxation in Isolated Rat Duodenum. Dig Dis Sci 53, 2106–2112 (2008). https://doi.org/10.1007/s10620-008-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0318-7

Keywords

Navigation