Skip to main content

Advertisement

Log in

The Short-Term Effects of Different Doses of Dexamethasone on the Numbers of some Bacteria in the Ileum

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Glucocorticoids are known to affect intestinal biota both directly or indirectly. The aim of the study reported here was to determine the short-term effects of different doses of dexamethasone on the numbers of various ileal bacteria populations. Rats were randomly put into groups, and each group was administered a single-dose injection of dexamethasone at either 0.1, 0.5, 1, 2.5, 5, or 10 mg/kg body weight. At 48-h post-injection, the numbers of total aerobe, anaerobe, lactobacilli and coliform bacteria in the ileum were determined. The numbers of total aerobes and lactobacilli were higher in the groups receiving 5 and 10 mg/kg dexamethasone than in the control and other dose groups (P < 0.01 and P < 0.001, respectively). The number of ileal anaerobic bacteria was higher in group receiving 5 mg/kg than in the other groups (P < 0.01). There were more coliform bacteria in the group receiving 0.1 mg/kg than in the groups receiving 0.5, 1 and 10 mg/kg (P < 0.05). In light of these results, the effects of dose-dependent increases in the number of different bacterial groups affecting gut functions have still to be determined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  2. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435

    Article  PubMed  CAS  Google Scholar 

  3. Simon GL, Gorbach SL (1984) Intestinal flora in health and disease. Gastroenterology 86:174–193

    PubMed  CAS  Google Scholar 

  4. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 2:881–884

    Article  Google Scholar 

  5. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    Article  PubMed  CAS  Google Scholar 

  6. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425

    Article  PubMed  CAS  Google Scholar 

  7. Bailey MT, Karaszewski JW, Lubach GR, Coe CL, Lyte M (1999) In vivo adaptation of attenuated Salmonella typhimurium results in increased growth upon exposure to norepinephrine. Physiol Behav 67:359–364

    Article  PubMed  CAS  Google Scholar 

  8. Freestone PP, Haigh RD, Williams PH, Lyte M (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60

    Article  PubMed  CAS  Google Scholar 

  9. Alverdy JC, Laughlin RS, Wu L (2003) Influence of the critically ill state on host–pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med 31:598–607

    Article  PubMed  Google Scholar 

  10. Roberts A, Matthews JB, Socransky SS, Freestone PPE, Williams PH, Chapple ILC (2005) Stress and the periodontal diseases: growth responses of periodontal bacteria to Escherichia coli stress-associated autoinducer and exogenous Fe. Oral Microbiol Immunol 20:147–153

    Article  PubMed  CAS  Google Scholar 

  11. Bailey MT, Lubach GR, Coe CL (2004) Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Ped Gastroenterol Nutr 38:414–421

    Article  Google Scholar 

  12. Bailey MT, Engler H, Sheridan JF (2006) Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. J Neuroimmune 171:29–37

    Article  CAS  Google Scholar 

  13. Lan PT, Sakomoto M, Benno Y (2004) Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol 48:917–949

    PubMed  CAS  Google Scholar 

  14. Tannock GW (1997) Modification of the normal microbiota by diet, stress, antimicrobial agents, and probiotics. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology, vol. 2. Gastrointestinal microbes and host interactions. Chapman & Hall, New York, pp 434–66

    Google Scholar 

  15. Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155

    Article  PubMed  CAS  Google Scholar 

  16. Spitz J, Hecht G, Taveras M, Aoys E, Alverdy J (1994) The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology 106:35–41

    PubMed  CAS  Google Scholar 

  17. Spitz J, Ghandi S, Taveras M, Aoys E, Alverdy J (1996) Characteristics of the intestinal epithelial barrier during dietary manipulation and glucocorticoid stress. Crit Care Med 24:635–641

    Article  PubMed  CAS  Google Scholar 

  18. Alverdy JC, Hendrickson B, Guandalini SS, Laughlin RJ, Kent K, Banerjee R (1999) Perturbed bioelectrical properties of the mouse cecum following hepatectomy and starvation: the role of bacterial adherence. Shock 12:235–241

    Article  PubMed  CAS  Google Scholar 

  19. Hartemink R, Rombouts FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. J Microbiol Methods 36:181–192

    Article  PubMed  CAS  Google Scholar 

  20. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598

    PubMed  CAS  Google Scholar 

  21. Deitch EA, Winterton J, Berg R (1987) Effect of starvation, malnutrition and trauma on the gastrointestinal tract flora and bacterial translocation. Arch Surg 122:1019–1024

    PubMed  CAS  Google Scholar 

  22. Alverdy J, Aoys E (1991) The effect of glucocorticoid administration on bacterial translocation. Ann Surg 214:719–723

    Article  PubMed  CAS  Google Scholar 

  23. Kirimlioglu V, Kirimlioglu H, Yilmaz S, Piskin T, Tekerekoglu S, Bayindir Y (2006) Effect of steroid on mitochondrial oxidative stress enzymes, intestinal microflora, and bacterial translocation in rats subjected to temporary liver inflow occlusion. Transplant Proc 38:378–381

    Article  PubMed  CAS  Google Scholar 

  24. Wenzl HH, Schımpl G, Feıerl G, Steınwender G (2003) Effect of prenatal cortisone on spontaneous bacterial translocation from gastrointestinal tract in neonatal rat. Dig Dis Sci 48:1171–1176

    Article  PubMed  CAS  Google Scholar 

  25. Schiffrin EJ, Carter EA, Walker WA, Frieberg E, Benjamin J, Israel EJ (1993) Influence of prenatal corticosteroids on bacterial colonization in the newborn rat. J Pediatr Gastroenterol Nutr 17:271–275

    PubMed  CAS  Google Scholar 

  26. Alverdy J, Zaborina O, Wu L (2005) The impact of stress and nutrition on bacterial–host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care 8:205–209

    Article  PubMed  Google Scholar 

  27. Nasır A, Moudgal RP, Sıngh NB (1999) Involvement of corticosterone in food intake, food passage time and in vivo uptake of nutrients in the chicken (Gallus domesticus). Brit Poult Sci 40:517–522

    Article  Google Scholar 

  28. Suzuki K, Harasawa R, Yoshitake Y, Mitsuoka T (1983) Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Jpn J Vet Sci 45:331–338

    CAS  Google Scholar 

  29. Cibik R, Marcille F, Corthier G, Dore J (2004) La flore intestinale: mise en place, description et influence du mode d’alimentation. Archives de pédiatrie 11:573–575

    Article  PubMed  CAS  Google Scholar 

  30. Smirnov A, Perez R, Amit-Romach E, Sklan D, Uni Z (2005) Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J Nutr 135:187–192

    PubMed  CAS  Google Scholar 

  31. Finnie IA, Campbell BJ, Taylor BA, Milton JD, Sadek SK, Yu LG, Rhodes JM (1996) Stimulation of colonic mucin synthesis by corticosteroids and nicotine. Clin Sci 91:359–364

    PubMed  CAS  Google Scholar 

  32. Castagliuolo I, Lamont JT, Qiu B, Fleming SM, Bhaskar KR, Nikulasson ST, Kornetsky C, Pothoulakis C (1996) Acute stress causes mucin release from rat colon. Am J Physiol 271:884–892

    Google Scholar 

  33. Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75:944–953

    Article  PubMed  CAS  Google Scholar 

  34. Schwarz E, Saalmu¨ller A, Gerner W, Claus R (2005) Intraepithelial but not lamina propria lymphocytes in the porcine gut are affected by dexamethasone treatment. Vet Immunol Immunopathol 105:125–139

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hümeyra Ünsal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ünsal, H., Balkaya, M., Ünsal, C. et al. The Short-Term Effects of Different Doses of Dexamethasone on the Numbers of some Bacteria in the Ileum. Dig Dis Sci 53, 1842–1845 (2008). https://doi.org/10.1007/s10620-007-0089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-0089-6

Keywords

Navigation