Skip to main content

Advertisement

Log in

Genetic structure and individual performance following a recent founding event in a small lizard

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Reintroduced populations of threatened species are often founded by a small number of individuals, but maximising genetic diversity is often a criterion for founder selection. Reintroduction of pregnant females has been proposed as a means of maximising productivity and genetic diversity, but it is unclear whether the release of pregnant females increases the effective number of founders. Ten male and 20 gravid female egg-laying skinks (Oligosoma suteri) were reintroduced to Korapuki Island from Green Island, New Zealand in 1992. We sampled the populations on both Green and Korapuki Islands to examine the effect of reintroduction on the genetic structure and fitness of egg-laying skinks following release. The population on Korapuki Island showed multiple genetic signatures of a bottleneck that were not detected in the population on Green Island. At the individual level, juveniles on Korapuki Island were more homozygous than adults on Korapuki and Green Islands. However, we did not find evidence of inbreeding depression using two performance-based surrogates of fitness. Further, the population on Korapuki Island had a significantly larger effective population size than would have been expected by reintroduction of 30 skinks, based on 10,000 simulated populations. The reintroduction of gravid females aided in increasing the effective number of founders, and may be a viable option for maximizing genetic diversity in reintroduced populations, particularly for long-lived species. However, the continued loss of genetic variation in reintroduced populations may have more insidious long-term consequences, such as the loss of adaptive potential, which cannot be assessed in the short-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Andrews RM, Mathies T, Warner DA (2000) Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol Monogr 14:420–431

    Article  Google Scholar 

  • Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh to estimate heterozygosity, alleles or loci? Mol Ecol 15:4659–4665

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DP, McLean IG (1995) New Zealand translocations: theory and practice. Pac Conserv Biol 2:39–54

    Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Beebee T, Rowe G (2001) Application of genetic bottleneck testing to the investigation of amphibian declines: a case study with natterjack toads. Conserv Biol 15:266–270

    Google Scholar 

  • Berry O, Gleeson DM, Sarre SD (2003) Microsatellite DNA markers for New Zealand skinks. Conserv Genet 4:411–414

    Article  CAS  Google Scholar 

  • Boessenkool S, Taylor SS, Tepolt CK, Komdeur J, Jamieson IG (2007) Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv Genet 8:705–714

    Article  Google Scholar 

  • Briskie JV, Mackintosh M (2004) Hatching failure increases with severity of population bottlenecks in birds. Proc R Acad Sci USA 101:558–561

    Article  CAS  Google Scholar 

  • Brodie ED (1992) Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46:1284–1298

    Article  Google Scholar 

  • Calsbeek R, Bonneaud C, Prabhu S, Manoukis N, Smith TB (2007) Multiple paternity and sperm storage lead to increased genetic diversity in Anolis lizards. Evol Ecol Res 9:495–503

    Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765

    Article  PubMed  CAS  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Christian KA, Tracy CR (1981) The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49:218–223

    Article  Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Coulson T, Albon S, Slate J, Pemberton J (1999) Microsatellite loci reveal sex-dependent responses to inbreeding and outbreeding in red deer calves. Evolution 53:1951–1960

    Article  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Daugherty CH, Patterson GB, Hitchmough RA (1994) Taxonomic and conservation review of the New Zealand herpetofauna. N Z J Zool 21:317–323

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proc R Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Dodd CK, Seigel RA (1991) Relocation, repatriation, and translocation of amphibians and reptiles: are they conservation strategies that work? Herpetologica 47:336–350

    Google Scholar 

  • Eales J, Thorpe RS, Malhotra A (2010) Colonization history and genetic diversity: adaptive potential in early stage invasions. Mol Ecol 19:2858–2869

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fitzsimmons NN, Buskirk SW, Smith MH (1997) Genetic changes in reintroduced Rocky Mountain bighorn sheep populations. J Wildl Manag 61:863–872

    Article  Google Scholar 

  • Forbes SH, Boyd DK (1997) Genetic structure and migration in native and reintroduced Rocky Mountain wolf populations. Conserv Biol 11:1226–1234

    Article  Google Scholar 

  • Frankham R (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Garland T, Bennett AF, Daniels CB (1990a) Heritability of locomotor performance and its correlates in a natural population. Experientia 46:530–533

    Article  Google Scholar 

  • Garland T, Hankins E, Huey RB (1990b) Locomotor capacity and social dominance in male lizards. Funct Ecol 4:243–250

    Article  Google Scholar 

  • Goudet J (1995) Fstat (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Greenwald OE (1974) Thermal dependence of striking and prey capture by gopher snakes. Copeia 1974(1):141–148

    Article  Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480

    Article  PubMed  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hardy GS (1977) New Zealand Scincidae (Reptilia: Lacertilia): a taxonomic and zoogeographic study. N Z J Zool 4:221–325

    Google Scholar 

  • Hare KM, Miller KA (2009) What dives beneath: diving as a measure of performance in lizards. Herpetologica 65:227–236

    Article  Google Scholar 

  • Hare KM, Longson CG, Pledger S, Daugherty CH (2004) Size, growth, and survival are reduced at cool incubation temperatures in the temperate lizard Oligosoma suteri (Lacertilia: Scincidae). Copeia 2004(2):383–390

    Article  Google Scholar 

  • Hedrick P (2000) Genetics of populations. Jones and Bartlett, Sudbury

    Google Scholar 

  • Hicks GRF, McColl HP, Meads MJ, Hardy GS, Roser RJ (1975) An ecological reconnaissance of Korapuki Island, Mercury Islands. Notornis 22:195–220

    Google Scholar 

  • Huey RB, Schneider W, Eire GL, Stevenson RD (1981) A field-portable racetrack and timer for measuring acceleration and speed of small cursorial animals. Experientia 37:1356–1357

    Article  PubMed  CAS  Google Scholar 

  • Husak JF, Fox SF, Lovern MB, Van Den Bussche RA (2006) Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60:2122–2130

    PubMed  CAS  Google Scholar 

  • Irschick DJ, Meyers JJ, Husak JF, Le Galliard JF (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res 10:177–196

    Google Scholar 

  • Jayne BC, Bennett AF (1990) Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44:1204–1229

    Article  Google Scholar 

  • Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52:240–250

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kuo CH, Janzen FJ (2003) Bottlesim: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673

    Article  CAS  Google Scholar 

  • Linklater WL (2007) Translocation reverses birth sex ratio bias depending on its timing during gestation: evidence for the action of two sex-allocation mechanisms. Reprod Fertil Dev 19:831–839

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Cornuet JM, Allendorf FW (1999) Temporal changes in allele frequencies provide estimates of population bottleneck size. Conserv Biol 13:523–530

    Article  Google Scholar 

  • Madsen T, Stille B, Shine R (1996) Inbreeding depression in an isolated population of adders Vipera berus. Biol Conserv 75:113–118

    Article  Google Scholar 

  • Maudet C, Miller C, Bassano B, Breitenmoser-Würsten C, Gauthier D, Obexer-Ruff G, Michallet J, Taberlet P, Luikart G (2002) Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)]. Mol Ecol 11:421–436

    Article  CAS  Google Scholar 

  • Miller KA (2007) Taking the plunge. For Bird 326:20–22

    Google Scholar 

  • Miller HC, Miller KA, Daugherty CH (2008) Reduced MHC variation in a threatened tuatara species. Anim Conserv 11:206–214

    Article  Google Scholar 

  • Miller KA, Chapple DG, Towns DR, Ritchie PA, Nelson NJ (2009a) Assessing genetic diversity for conservation management: a case study of a threatened reptile. Anim Conserv 12:163–171

    Article  Google Scholar 

  • Miller KA, Nelson NJ, Smith HG, Moore JA (2009b) How do founder group size and reproductive skew affect genetic diversity in reintroduced populations? Mol Ecol 18:3792–3802

    Article  PubMed  CAS  Google Scholar 

  • Miller KA, Hare KM, Nelson NJ (2010) Do alternate escape tactics provide a means of compensation for impaired performance ability? Biol J Linn Soc 99:241–249

    Article  Google Scholar 

  • Moore JA, Nelson NJ, Keall SN, Daugherty CH (2008) Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conserv Genet 9:1243–1251

    Article  Google Scholar 

  • Nelson NJ, Keall SN, Brown D, Daugherty CH (2002) Establishing a new wild population of tuatara (Sphenodon guntheri). Conserv Biol 16:887–894

    Article  Google Scholar 

  • Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4:519–520

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Punzo F (2007) Sprint speed and degree of wariness in two populations of whiptail lizards (Aspidoscelis tesselata) (Squamata: Teiidae). Ethol Ecol Evol 19:159–169

    Article  Google Scholar 

  • Ramstad KM, Woody CA, Sage GK, Allendorf FW (2004) Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark. Alaska Mol Ecol 13:277–290

    Article  CAS  Google Scholar 

  • Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410

    Article  CAS  Google Scholar 

  • Robbins LW, Hartman GD, Smith MH (1987) Dispersal, reproductive strategies, and the maintenance of genetic variability in mosquitofish (Gambusia affinis). Copeia 1987(1):156–164

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Saunders AJ (1995) Translocation in New Zealand: an overview. In: Serena M (ed) Reintroduction biology of Australian, New Zealand fauna. Surrey Beatty & Sons, Chipping Norton, pp 43–46

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Pemberton JM (2002) Comparing molecular measures for detecting inbreeding depression. J Evol Biol 15:20–31

    Article  Google Scholar 

  • Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, Miller B (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

    Article  Google Scholar 

  • Stephen CL, Whittaker DG, Gillis D, Cox LL, Rhodes OE (2005) Genetic consequences of reintroductions: an example from Oregon pronghorn antelope (Antilocapra americana). J Wildl Manag 69:1463–1474

    Article  Google Scholar 

  • Stockwell CA, Mulvey M, Vinyard GL (1996) Translocations and the preservation of allelic diversity. Conserv Biol 10:1133–1141

    Article  Google Scholar 

  • Sugg DW, Chesser RK (1994) Effective population sizes with multiple paternity. Genetics 137:1147–1155

    PubMed  CAS  Google Scholar 

  • Swanson BJ, Peters LR, Kyle CJ (2006) Demographic and genetic evaluation of an American marten reintroduction. J Mammal 87:272–280

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301

    Article  Google Scholar 

  • Towns DR (1975a) Ecology of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae), in boulder beach habitats. N Z J Zool 2:389–407

    Google Scholar 

  • Towns DR (1975b) Reproduction and growth of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae), in north-eastern New Zealand. N Z J Zool 2:409–423

    Google Scholar 

  • Towns DR (1991) Response of lizard assemblages in the Mercury Islands, New Zealand, to removal of an introduced rodent—the kiore (Rattus exulans). J R Soc N Z 21:119–136

    Google Scholar 

  • Towns DR (2002) Korapuki Island as a case study for restoration of insular ecosystems in New Zealand. J Biogeogr 29:593–607

    Article  Google Scholar 

  • Towns DR, Atkinson IAE (2004) Restoration plan for Korapuki Island (Mercury Islands), New Zealand, 2004–2024. Department of Conservation, Wellington

    Google Scholar 

  • Towns DR, Broome KG (2003) From small Maria to massive Campbell: forty years of rat eradications from New Zealand islands. N Z J Zool 30:377–398

    Google Scholar 

  • Towns DR, Daugherty CH (1994) Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonization. N Z J Zool 21:325–339

    Google Scholar 

  • Towns DR, Ferreira SM (2001) Conservation of New Zealand lizards (Lacertilia: Scincidae) by translocation of small populations. Biol Conserv 98:211–222

    Article  Google Scholar 

  • Towns DR, Parrish GR, Westbrooke I (2003) Inferring vulnerability to introduced predators without experimental demonstration: case study of Suter’s skink in New Zealand. Conserv Biol 17:1361–1371

    Article  Google Scholar 

  • Tsuji JS, Huey RB, Vanberkum FH, Garland T, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252

    Article  Google Scholar 

  • Van Damme R, Vanhooydonck B (2001) Origins of interspecific variation in lizard sprint capacity. Funct Ecol 15:186–202

    Article  Google Scholar 

  • Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257

    Article  PubMed  CAS  Google Scholar 

  • Waples RS (1987) Sperm storage, multiple insemination, and genetic variability in mosquitofish: a reassessment. Copeia 1987(4):1068–1071

    Article  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    PubMed  CAS  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756

    Article  Google Scholar 

  • Whitaker AH (1968) Lizards of Poor Knights Islands, New Zealand. N Z J Sci 11:623–651

    Google Scholar 

  • Williams RN, Rhodes OE, Serfass TL (2000) Assessment of genetic variance among source and reintroduced fisher populations. J Mammal 81:895–907

    Article  Google Scholar 

  • Williams CL, Serfass TL, Cogan R, Rhodes OE (2002) Microsatellite variation in the reintroduced Pennsylvania elk herd. Mol Ecol 11:1299–1310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Kelly Hare, Shay O’Neill, Chris Green, Ian Atkinson, and Rob Chappell for assistance in the field. We thank Hilary Miller and Jen Moore for comments on the manuscript and Jonathan Losos for valuable discussions. We also thank the people of Ngāti Hei for their support of this research. This work was funded by grants from the New Zealand Department of Conservation, the Society for Research on Amphibians and Reptiles in New Zealand, and Victoria University of Wellington (VUW), and was approved by the VUW Animal Ethics Committee (2006R12) and the New Zealand Department of Conservation (permit: WK/19129/RES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Miller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.A., Towns, D.R., Allendorf, F.W. et al. Genetic structure and individual performance following a recent founding event in a small lizard. Conserv Genet 12, 461–473 (2011). https://doi.org/10.1007/s10592-010-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0154-0

Keywords

Navigation