Skip to main content
Log in

MHC-mediated local adaptation in reciprocally translocated Chinook salmon

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Most Pacific salmonid populations have faced significant population declines over the past 30 years. In order to effectively conserve and manage these populations, knowledge of the evolutionary adaptive state of individuals and the scale of adaptation across populations is needed. The vertebrate major histocompatibility complex (MHC) represents an important adaptation to parasites, and genes encoding for the MHC are widely held to be undergoing balancing selection. However, the generality of balancing selection across populations at MHC loci is not well documented. Using Chinook salmon (Oncorhynchus tshawytscha) from two populations, we follow the survival of full-sib family replicates reared in their natal river and reciprocally transplanted to a foreign river to examine selection and local adaptation at the MHC class I and II loci. In both populations, we found evidence of a survivorship advantage associated with nucleotide diversity at the MHC class I locus. In contrast, we found evidence that MHC class II diversity was disadvantageous in one population. There was no evidence that these effects occurred in translocated families, suggesting some degree of local adaptation at the MHC loci. Thus, our results implicate balancing selection at the MHC class I but potentially differing selection across populations at the class II locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amos K, Thomas J (2002) Disease interactions between wild and cultured fish: observations and lessons learned in the Pacific northwest. Bull Eur Assoc Fish Pathol 22:95–102

    Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    CAS  PubMed  Google Scholar 

  • Arkoosh MR, Clemons ER, Kagley AN et al (2004) Survey of pathogens in juvenile salmon Oncorhynchus spp. migrating through Pacific Northwest estuaries. J Aquat Anim Health 16:186–196

    Article  Google Scholar 

  • Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW (2002) Resistance to three pathogens in the endangered winter-run Chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Can J Fish Aquat Sci 59:966–975

    Article  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    Article  CAS  PubMed  Google Scholar 

  • Blanchet S, Rey O, Berthier P, Lek S, Loot G (2009) Evidence of parasite-mediated disruptive selection on genetic diversity in a wild fish population. Mol Ecol 18:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Bruneau NN, Thorburn MA, Stevenson RMW (1999) Occurrence of Aeromonas salmonicida, Renibacterium salmoninarum, and infectious pancreatic necrosis virus in ontario salmonid populations. J Aquat Anim Health 11:350–357

    Article  Google Scholar 

  • Bryja J, Charbonnel K, Berthier K, Galan M, Cosson J-F (2007) Density-related changes in selection pattern for major histocompatibility complex genes in fluctuating populations of voles. Mol Ecol 16:5084–5097

    Article  CAS  PubMed  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Phil Trans Roy Soc B 364:1555–1565

    Article  CAS  Google Scholar 

  • Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Phil Trans Roy Soc B 356:1001–1012

    Article  CAS  Google Scholar 

  • Docker MF, Heath DD (2002) PCR-based markers detect genetic variation at growth and immune function-related loci in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol Notes 2:606–609

    Article  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  CAS  PubMed  Google Scholar 

  • Ekblom R, Saether SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kalas JA, Hoglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallingo media). Mol Ecol 16:1439–1451

    Article  PubMed  Google Scholar 

  • Evans ML, Neff BD (2009) MHC heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 18:4716–4729. doi:10.1111/j.1365-294X.2009.04374.x

    Article  CAS  PubMed  Google Scholar 

  • Evans ML, Neff BD, Heath DD (2010) MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity 104:449–459. doi:10.1038/hdy.2009.121

    Article  CAS  PubMed  Google Scholar 

  • Fraser BA, Neff BD (2010) Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138:273–278

    Article  CAS  PubMed  Google Scholar 

  • Fraser BA, Ramnarine IW, Neff BD (2010) Selection at the MHC class IIB locus across populations in the guppy (Poecilia reticulata). Heredity 104:155–167. doi:10.1038/hdy.2009.99

    Article  CAS  PubMed  Google Scholar 

  • Froeschke G, Sommer S (2005) MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the southern Kalahari. Mol Biol Evol 22:1254–1259

    Article  CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    CAS  PubMed  Google Scholar 

  • Grimholt U, Hordvik I, Fosse VM, Olsaker I, Endresen C, Lie O (1993) Molecular cloning of major histocompatibility complex class I cDNAs from Atlantic salmon (Salmo salar). Immunogenetics 37:469–473

    Article  CAS  PubMed  Google Scholar 

  • Groot C, Margolis L (1991) Pacific salmon life histories. UBC Press, Vancouver

    Google Scholar 

  • Harvell D (2004) Ecology and evolution of host-pathogen interactions in the wild. Am Nat 164:S1–S5

    Article  Google Scholar 

  • Heath DD, Shrimpton JM, Hepburn RI, Jamieson SK, Brode SK, Docker MF (2006) Population structure and divergence using microsatellite and gene locus markers in Chinook salmon (Oncorhynchus tshawytscha) populations. Can J Fish Aquat Sci 63:1370–1383

    Article  Google Scholar 

  • Hedrick PW, Kim TJ, Parker KM (2001) Parasite resistance and genetic variation in the endangered Gila topminnow. Anim Conserv 4:103–109

    Article  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal: homing versus straying in salmonids. In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, USA, pp 53–91

    Google Scholar 

  • Hordvik I, Grimholt U, Fosse VM, Lie O, Endresen C (1993) Cloning and sequence analysis of cDNAs encoding the MHC class II β chain in Atlantic salmon (Salmo salar). Immunogenetics 37:437–441

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Landry C, Garant D, Duchesne P, Bernatchez L (2001) ‘Good genes as heterozygosity’: the major histocompatibilty complex and mate choice in Atlantic salmon (Salmo salar). Proc Roy Soc Lond B 268:1279–1285

    Article  CAS  Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrapping and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • McClelland EE, Penn DJ, Potts WK (2003) Major histocompatibility complex heterozygote superiority during coinfection. Infect Immun 71:2079–2086

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Withler RE, Beacham TD (1997) Molecular evolution at MHC genes in two populations of Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 6:937–954

    Article  CAS  PubMed  Google Scholar 

  • Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14:19–38

    Article  CAS  PubMed  Google Scholar 

  • Neff BD, Garner SR, Heath JW, Heath DD (2008) The MHC and non-random mating in a captive population of Chinook salmon. Heredity 101:175–185

    Article  CAS  PubMed  Google Scholar 

  • Nehlsen W, Williams JE, Lichatowich JA (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16:4–21

    Google Scholar 

  • Nei M, Hughes AL (1991) Polymorphism and evolution of the major histocompatibility complex loci in mammals. In: Selander RK, Clark RG, Whittam TS (eds) Evolution at the molecular level. Sinauer Associates Inc., Sunderland, pp 222–247

    Google Scholar 

  • Nelson RJ, Beacham TD (1999) Isolation and cross species amplification of microsatellite loci useful for study of Pacific salmon. An Genet 30:228–229

    Article  CAS  Google Scholar 

  • O’Connell M, Danzmann RG, Cornuet JM, Wright JM, Ferguson MM (1997) Differentiation of rainbow trout (Oncorhynchus mykiss) populations in Lake Ontario and the evaluation of the stepwise mutation and infinite allele mutation models using microsatellite variability. Can J Fish Aquat Sci 54:1391–1399

    Article  Google Scholar 

  • Oliver MK, Lambin X, Cornulier T, Piertney SB (2009) Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol Ecol 18:80–92

    CAS  PubMed  Google Scholar 

  • Peters MB, Turner TF (2008) Genetic variation of the major histocompatibility complex (MHC class II beta gene) in the threatened Gila trout, Oncorhynchus gilae gilae. Cons Genet 9:257–270

    Article  CAS  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Pitcher TE, Neff BD (2006) MHC class IIB alleles contribute to both additive and nonadditive genetic effects on survival in Chinook salmon. Mol Ecol 15:2357–2365

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rodrigues PNS, Hermsen TT, van Maanen A, Taverne-Thiele AJ, Rombout JHMW, Dixon B, Stet RJM (1998) Expression of MhcCyca class I and class II molecules in the early life history of the common carp (Cyprinus carpio L.). Dev Comp Immun 22:493–506

    Article  CAS  Google Scholar 

  • Simkova A, Ottova E, Morand S (2006) MHC variability, life-traits and parasite diversity of European cyprinid fish. Evol Ecol 20:465–477

    Google Scholar 

  • Stead SM, Laird L (2002) The handbook of salmon farming. Springer, Cornwall

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207

    Article  Google Scholar 

  • Wakeland EK, Boehme S, She JX, Lu C-C, McIndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphisms of MHC class II genes: divergent allele advantage. Immunol Res 9:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wedekind C, Muller R, Spicher H (2001) Potential genetic benefits of mate selection in whitefish. J Evol Biol 14:980–986

    Article  Google Scholar 

  • Wedekind C, Walker M, Portmann J, Cenni B, Muller R, Binz T (2004) MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice in whitefish. J Evol Biol 17:11–18

    Article  CAS  PubMed  Google Scholar 

  • Wedekind C, Evanno G, Urbach D, Jacob A, Muller R (2008) ‘Good genes’ and ‘compatible genes’ effects in an Alpine whitefish and the information content of breeding tubercules over the course of the spawning season. Genetica 134:21–30

    Article  PubMed  Google Scholar 

  • Wedekind C, Gessner MO, Vazquez F, Maerki M, Steiner D (2010) Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology 91:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232

    Article  CAS  PubMed  Google Scholar 

  • Wegner KM, Kalbe M, Schaschl H, Reusch TBH (2004) Parasites and individual major histocompatibility complex diversity-an optimal choice? Microbes Infect 6:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Williamson KS, Cordes JF, May B (2002) Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Mol Ecol Notes 2:17–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to L. Clint and D. Ewart for permission to conduct this research in the Big Qualicum and Quinsam hatchery facilities. We also thank all of the staff at the Big Qualicum, Quinsam, and Rosewall hatcheries (Department of Fisheries and Oceans Canada, Pacific Region) for their significant logistical support throughout the duration of the experiment. Thanks to S. Garner for assistance setting up crosses, to V. Padmanabhan for assistance with the microsatellite genotyping, and to R. Hepburn and K. Ambacher for assistance with DNA extraction. A. Lachance provided access to the SSCP equipment. Eric Anderson and four anonymous reviewers provided helpful comments on the manuscript. Funding was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) PGS D Scholarship and an Ontario Graduate Scholarship in Science and Technology to MLE, NSERC Discovery/Accelerator grants and Canadian Foundation for Innovation/Ontario Innovation Trust grants to BDN, and NSERC Discovery and Canada Research Chair grants to DDH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Neff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 584 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M.L., Neff, B.D. & Heath, D.D. MHC-mediated local adaptation in reciprocally translocated Chinook salmon. Conserv Genet 11, 2333–2342 (2010). https://doi.org/10.1007/s10592-010-0119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0119-3

Keywords

Navigation