Skip to main content

Advertisement

Log in

Species limits and population differentiation in New Zealand snipes (Scolopacidae: Coenocorypha)

Conservation Genetics Aims and scope Submit manuscript

Abstract

At least four species of New Zealand snipes (Coenocorypha) became extinct following the introduction of predatory mammals, and another two species suffered massive range reductions. To investigate species limits and population differentiation in six of the seven remaining offshore populations, we assayed variation in nine microsatellite loci and 1,980 base pairs of four mitochondrial DNA (mtDNA) genes. Genetic diversity in all populations except the largest one on Adams Island in the Auckland Islands was very low in both genomes. Alleles were fixed at many microsatellite loci and for single mtDNA haplotypes, particularly in the populations in the Chathams, Snares, Antipodes and Campbell Islands. Strong population structure has developed, and Chathams and Snares Islands populations are effectively genetically isolated from one another and from the more southern island populations. Based on reciprocal monophyly of lineages and their morphological distinctiveness we recommend that three phylogenetic species should be recognized, C. pusilla in the Chatham Islands, C. huegeli in the Snares Islands and C. aucklandica in the southern islands. The populations of C. aucklandica in the Auckland Islands, Antipodes Island and Campbell Island may warrant recognition as subspecies, and all should be managed as separate conservation units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aikman H, Miskelly C (2004) Birds of the Chatham Islands. Department of Conservation, Wellington

    Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Barker D, Carroll J, Edmonds H, Fraser J, Miskelly CM (2005) Discovery of a previously unknown Coenocorypha snipe in the Campbell Island group, New Zealand subantarctic. Notornis 52:143–149

    Google Scholar 

  • Beerli P (2004) Migrate: documentation and program, part of LAMARC version 2.0. Revised December 23, 2004. Distributed over the internet, http://evolution.gs.washington.edu/lamarc.html

  • Beerli P, Felsenstein J (1999) Maximum likelihood estimation of migration rates and population numbers of two populations using a coalescent approach. Genetics 152:763–773

    CAS  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  Google Scholar 

  • Bell LC (1955) Notes on the birds of the Chatham Islands. Notornis 6:65–68

    Google Scholar 

  • Bell BD (1974) Mangere Island. Wildlife—a review, vol 5. New Zealand Wildlife Service, Department of Internal Affairs, Wellington, pp 31–34

    Google Scholar 

  • Dallas JF (1992) Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm Genome 3:452–456

    Article  CAS  PubMed  Google Scholar 

  • Dawson EW (1955) The birds of the Chatham Islands 1954 Expedition. Notornis 6:78–82

    Google Scholar 

  • Dean AD, Greenwald JE (1995) Use of filtered pipet tips to elute DNA from agarose gels. Biotechniques 18:980

    CAS  PubMed  Google Scholar 

  • Dib C, Faure S, Fizames C et al (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154

    Article  CAS  PubMed  Google Scholar 

  • England PR, Graham HR, Osler GHR, Woodworth LM, Montgomery ME, David A, Briscoe DA, Frankham R (2003) Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv Genet 4:595–604

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Fleming CA (1982) George Edward Lodge, the unpublished New Zealand bird paintings. Nova Pacifica, Wellington

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Hagelberg EH (1994) Mitochondrial DNA from ancient bones. In: Herrman B, Hummel S (eds) Ancient DNA. Springer, New York, pp 195–205

    Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:501–507

    Google Scholar 

  • Higgins PJ, Davies SJJF (1996) Handbook of Australian, New Zealand and Antarctic birds vol 3 Snipe to pigeons. Oxford University Press, Melbourne

    Google Scholar 

  • Holdaway RN, Worthy TH, Tennyson AJD (2001) A working list of breeding bird species of the New Zealand region at first human contact. New Zealand J Zool 28:119–187

    Article  Google Scholar 

  • Jamieson IG, Wallis GP, Briskie JV (2006) Inbreeding and endangered species management: is New Zealand out of step with the rest of the world? Conserv Biol 20:38–47

    Article  PubMed  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation in the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Millener PR (1999) The history of the Chatham Islands’ bird fauna of the last 7000 years, a chronicle of change and extinction. In: Proceedings of the 4th international meeting of the society of avian paleontology and evolution (Washington DC, June 1996) Smithsonian contributions to paleobiology, vol 89, pp 85–109

  • Miskelly CM (1987) The identity of the hakawai. Notornis 34:95–116

    Google Scholar 

  • Miskelly CM (1988) The Little Barrier Island snipe. Notornis 35:273–281

    Google Scholar 

  • Miskelly CM (1990) Breeding systems of New Zealand snipe Coenocorypha aucklandica and Chatham Island snipe C. pusilla; are they food limited? Ibis 132:366–379

    Article  Google Scholar 

  • Miskelly CM (2000) Historical records of snipe from Campbell Island, New Zealand. Notornis 47:131–140

    Google Scholar 

  • Miskelly CM, Fraser JR (2006a) Campbell Island snipe (Coenocorypha undescribed sp) recolonise subantarctic Campbell Island following rat eradication. Notornis 53:353–359

    Google Scholar 

  • Miskelly C, Fraser J (2006b) Campbell Island snipe survey, January 2006. Department of Conservation, Wellington

    Google Scholar 

  • Miskelly CM, Sagar PM, Tennyson AJD, Scofield RP (2001) Birds of the Snares Islands, New Zealand. Notornis 48:1–40

    Google Scholar 

  • Miskelly CM, Walker KJ, Elliott GP (2006) Breeding ecology of three subantarctic snipes (genus Coenocorypha). Notornis 53:361–374

    Google Scholar 

  • Miskelly CM, Dowding JE, Elliott GP, Powlesland RG, Robertson HA, Sagar PM, Scofield RP, Taylor GA (2008) Conservation status of New Zealand birds, 2008. Notornis 55:117–135

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov Chain Monte Carlo approach. Genetics 158:885–896

    CAS  PubMed  Google Scholar 

  • Nilsson RJ, Kennedy ES, West JA (1994) The birdlife of South East Island (Rangatira), Chatham Islands, New Zealand. Notornis 41(supplement):109–125

    Google Scholar 

  • Pereira SL, Baker AJ (2006) A mitogenomics timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Bio Evol 23:1731–1740

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Ramakrishnan U, Hadly EA, Mountain JL (2005) Detecting past population bottlenecks using temporal genetic data. Mol Ecol 14:2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Reed DH, Briscoe DA, Frankham R (2002) Inbreeding and extinction: the effect of environmental stress and lineage. Conserv Genet 3:301–307

    Article  CAS  Google Scholar 

  • Roberts A, Miskelly C (2003) Recovery plan for the snipe species of New Zealand and the Chatham Islands (Coenocorypha spp) tutukiwi, 2003–2015. Department of Conservation, Wellington

    Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messequer X, Rozas R (2003) DNAsp, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saccheri IJ, Wilson IJ, Nichols RA, Bruford MW, Brakefield PM (1999) Inbreeding of bottlenecked butterfly populations: estimation using the likelihood of changes in marker allele frequencies. Genetics 151:1053–1063

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tennyson AJD, Millener PR (1994) Bird extinctions and fossil bones from Mangere Island, Chatham Islands. Notornis 41(supplement):165–178

    Google Scholar 

  • Turbott EG (1990) Checklist of the birds of New Zealand and the Ross Dependency, Antarctica. Random Century and Ornithological Society of New Zealand, Auckland

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Whitlock MC (2000) Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution Int J org Evolution 54:1855–1861

    CAS  Google Scholar 

  • Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2002) Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv Genet 3:277–288

    Article  CAS  Google Scholar 

  • Worthy TH (2003) A new extinct species of snipe Coenocorypha from Vitilevu, Fiji. Bulletin of the British Ornithologists’ Club 123:90–103

    Google Scholar 

  • Worthy TH, Holdaway RN (2002) The lost world of the moa, prehistoric life of New Zealand. Canterbury University Press, Christchurch

    Google Scholar 

  • Worthy TH, Miskelly CM, Ching BA (2002) Taxonomy of North and South Island snipes (Aves: Scolopacidae: Coenocorypha) with analysis of a remarkable collection of snipe bones from Greymouth, New Zealand. New Zealand J Zool 29:231–244

    Article  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

We thank BDG Synthesis, the Natural Sciences and Engineering Research Council of Canada (grant A 200 to AJB), and the New Zealand Department of Conservation (DOC) for financial support for fieldwork and labwork. Snipe blood and feather samples were collected with the assistance of Dave Barker, Karen Barlow, Jeremy Carroll, Graeme Elliott, James Fraser, Sheryl Hamilton, Christine Reed, Kath Walker, Murray Willans, and Al Wiltshire. Access to nature reserves and collection of samples was authorised by the DOC Southland and Wellington Conservancies. Figure 1 was prepared by Chris Edkins, DOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan J. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, A.J., Miskelly, C.M. & Haddrath, O. Species limits and population differentiation in New Zealand snipes (Scolopacidae: Coenocorypha). Conserv Genet 11, 1363–1374 (2010). https://doi.org/10.1007/s10592-009-9965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9965-2

Keywords

Navigation