Skip to main content
Log in

Molecular and morphological evidence of natural interspecific hybridization between the uncommon Eucalyptus aggregata and the widespread E. rubida and E. viminalis

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Human activities can promote increased hybridization in the genus Eucalyptus with potentially detrimental consequences for the persistence of rare species. However, many hybrid combinations have not been investigated with combined use of genetic markers and morphology. We assessed the efficiency of the STRUCTURE program and morphological intermediacy for identifying hybrids between the uncommon tree, Eucalyptus aggregata, which putatively hybridizes with the common congeners, E. rubida and E. viminalis in south-eastern Australia. We sampled 1,005 seedlings across 27 populations, all seedlings were genotyped at 6 allozyme loci and scored for 22 stem and leaf characters. Both marker sets confirmed that E. aggregata is hybridizing with both E. rubida and E. viminalis. Allozymes revealed hybrids from E. aggregata trees in 88% of populations and hybrids comprised 7.3% of all seedlings. Both genetics and morphology indicated that ~50% were likely to be F1 hybrids, and both simulations and morphological characteristics indicated that the remainder were mostly backcrosses. Morphological analysis correctly distinguished 71% of F1 hybrids from parentals and was least accurate when dealing with potential backcrosses (50% success). Hence, techniques using genetic data (no prior information) and the assessment of appropriate admixture thresholds through simulations provided the most accurate estimates of hybrid frequency. In this study, potential introgression and the high frequency of hybrids in small populations (~30%), suggests that hybridization should be considered in the management and conservation of E. aggregata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott R, James J, Milne R, Gillies A (2003) Plant introductions, hybridization and gene flow. Philos Trans R Soc Lond B Biol Sci 358:1123–1132. doi:10.1098/rstb.2003.1289

    Article  PubMed  CAS  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Barbour RC, Potts BM, Vaillancourt RE, Tibbits WN, Wiltshire RJE (2002) Gene flow between introduced and native Eucalyptus species. New For 23:177–191. doi:10.1023/A:1020389432492

    Google Scholar 

  • Barbour RC, Potts BM, Vaillancourt RE (2003) Gene flow between introduced and native Eucalyptus species: exotic hybrids are establishing in the wild. Aust J Bot 51:429–439. doi:10.1071/BT03016

    Article  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568. doi:10.1046/j.1365-294x.2001.01216.x

    Article  PubMed  CAS  Google Scholar 

  • Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616

    Article  Google Scholar 

  • Brooker MIH, Kleinig DA (1999) Field guide to Eucalyptus South-Eastern Australia, 2nd edn. Bloomings Books, Hawthorn

    Google Scholar 

  • Brown AHD, Allard RW (1970) Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66:133–145

    PubMed  Google Scholar 

  • Butcher PA, Skinner AK, Gardiner CA (2005) Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii. Conserv Genet 6:213–226. doi:10.1007/s10592-004-7830-x

    Article  Google Scholar 

  • Delaporte K, Conran J, Sedgley M (2001) Interspecific hybridization within Eucalyptus (Myrtaceae): subgenus Symphyomyrtus, Sections Bisectae and Adnataria. Int J Plant Sci 162:1317–1326. doi:10.1086/323276

    Article  Google Scholar 

  • Drake D (1981) Reproductive success of two Eucalyptus hybrid populations. I. Generalized seed output model and comparison of fruit parameters. Aust J Bot 29:25–35. doi:10.1071/BT9810025

    Article  Google Scholar 

  • Ellis MF, Sedgley M, Gardner JA (1991) Interspecific pollen-pistil interaction in Eucalyptus L’Her. (Myrtaceae); the effect of taxonomic distance. Ann Bot (Lond) 68:185–194

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Evol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Field DL, Ayre DJ, Whelan RJ, Young AG Relative frequency of sympatric species influences rates of interspecific hybridization, seed production and seedling performance in the uncommon Eucalyptus aggregata. J Ecol (in press)

  • GENSTAT (2005) Lawes agricultural trust. VSN International, Hertfordshire

    Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709. doi:10.1086/284231

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Grant V (1975) Genetics of flowering plants, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus. Aust J Bot 36:41–66. doi:10.1071/BT9880041

    Article  Google Scholar 

  • Heiser CB (1979) Hybrid populations of Helianthus divaricatus and H. microcephalus after 22 years. Taxon 28:71–75. doi:10.2307/1219560

    Article  Google Scholar 

  • Hopper SD, Coates DJ, Burbidge AH (1978) Natural hybridization and morphometric relationships between three mallee Eucalyptus in the Fitzgerald River National Park, W.A. Aust J Bot 26:319–333. doi:10.1071/BT9780319

    Article  Google Scholar 

  • Kennington WJ, James SH (1997) The effect of small population size on the mating system of a rare clonal mallee, Eucalyptus argutifolia (Myrtaceae). Heredity 78:252–260. doi:10.1038/hdy.1997.39

    Article  Google Scholar 

  • Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557. doi:10.1046/j.1420-9101.2003.00548.x

    Article  PubMed  CAS  Google Scholar 

  • Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16. doi:10.1046/j.1523-1739.1996.10010010.x

    Article  Google Scholar 

  • Lopez GA, Potts BM, Tilyard PA (2000) F1 hybrid inviability in Eucalyptus: the case of E.ovata × E. globulus. Heredity 85:242–250. doi:10.1046/j.1365-2540.2000.00739.x

    Article  PubMed  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237. doi:10.1016/j.tree.2005.02.010

    Article  PubMed  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Jackson HD, Potts BM (2001) Chloroplast sharing in the tasmanian Eucalyptus. Evolution Int J Org Evolution 55:703–711. doi:10.1554/0014-3820(2001)055[0703:CSITTE]2.0.CO;2

    CAS  Google Scholar 

  • Moran GF, Bell CJ (1983) Eucalyptus. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part B. Elsevier Science Publishers, Amsterdam, pp 423–441

    Google Scholar 

  • Nason JD, Ellstrand NC, Arnold ML (1992) Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises. Am J Bot 79:101–111. doi:10.2307/2445203

    Article  Google Scholar 

  • Nielsen EE, Bach LA, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973. doi:10.1111/j.1471-8286.2006.01433.x

    Article  Google Scholar 

  • Orr H (2001) The genetics of species differences. Trends Ecol Evol 16:343–350. doi:10.1016/S0169-5347(01)02167-X

    Article  Google Scholar 

  • Peakall R, Smouse PE (2005) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Australian National University, Canberra

    Google Scholar 

  • Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In: Williams J, Woinarski J (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, pp 56–91

    Google Scholar 

  • Potts BM, Barbour RC, Hingston AB, Vaillancourt RE (2003) Genetic pollution of native eucalypt gene pools—identifying the risks. Aust J Bot 51:1–25. doi:10.1071/BT02035

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pryor LD (1976) The biology of Eucalyptus. Edward Arnold, London

    Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109. doi:10.1146/annurev.ecolsys.27.1.83

    Article  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624. doi:10.1046/j.1469-8137.1998.00315.x

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological makers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241. doi:10.1080/713608045

    Article  CAS  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228. doi:10.1038/sj.hdy.6800029

    Article  PubMed  Google Scholar 

  • Savolainen O, Kuittinen H (2000) Small population processes. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles, practice. CSIRO Publishing, Collingwood, pp 91–100

    Google Scholar 

  • Sedgley M, Griffin AR (1989) Sexual reproduction of tree crops. Academic Press, London

    Google Scholar 

  • Stokoe RL, Shepherd M, Lee DJ, Nikles GD, Henry RJ (2001) Natural inter-subgeneric hybridisation between Eucalyptus acmednoides Schauer and Eucalyptus cloeziana F. Muell (Myrtaceae) in Southeast Queensland. Ann Bot (Lond) 88:563–570. doi:10.1006/anbo.2001.1507

    Article  Google Scholar 

  • Strauss SH, Conkle NT (1986) Segregation, linkage and diversity of allozymes in Knobcone Pine. Theor Appl Genet 72:483–493. doi:10.1007/BF00289530

    Article  Google Scholar 

  • Tibbits WN, Potts BM, Savva MH (1991) Inheritance of freezing resistance in interspecific F sub(1) hybrids of Eucalyptus. Theor Appl Genet 83:126–135. doi:10.1007/BF00229235

    Article  Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72. doi:10.1111/j.1365-294X.2005.02773.x

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J Org Evolution 38:1358–1370. doi:10.2307/2408641

    Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland

    Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053. doi:10.1046/j.1523-1739.2001.0150041039.x

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution Int J Org Evolution 19:395–420. doi:10.2307/2406450

    Google Scholar 

Download references

Acknowledgements

We thank Andrew Slee and John Connors for assistance with Eucalyptus classification. We also thank Linda Broadhurst, Anthony Whelan, Tony Brown, Leanne Cox, Robert Godfree, Liz Gregory, and Melinda Pickup for assistance. This work was conducted while (D.L.F.) was receiving a University of Wollongong Post-graduate Research Award and ‘top-up’ scholarship from CSIRO Plant Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Field.

Appendix

Appendix

Table A1 Description of morphological traits scored on pure-bred and hybrid Eucalyptus seedlings (n = 1,005) and tests for differentiation between genealogical classes (d.f. = 6) and population (d.f. = 27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, D.L., Ayre, D.J., Whelan, R.J. et al. Molecular and morphological evidence of natural interspecific hybridization between the uncommon Eucalyptus aggregata and the widespread E. rubida and E. viminalis . Conserv Genet 10, 881–896 (2009). https://doi.org/10.1007/s10592-008-9649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9649-3

Keywords

Navigation