Skip to main content
Log in

Strong duality and minimal representations for cone optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The elegant theoretical results for strong duality and strict complementarity for linear programming, LP, lie behind the success of current algorithms. In addition, preprocessing is an essential step for efficiency in both simplex type and interior-point methods. However, the theory and preprocessing techniques can fail for cone programming over nonpolyhedral cones. We take a fresh look at known and new results for duality, optimality, constraint qualifications, CQ, and strict complementarity, for linear cone optimization problems in finite dimensions. One theme is the notion of minimal representation of the cone and the constraints. This provides a framework for preprocessing cone optimization problems in order to avoid both the theoretical and numerical difficulties that arise due to the (near) loss of the strong CQ, strict feasibility. We include results and examples on the surprising theoretical connection between duality gaps in the original primal-dual pair and lack of strict complementarity in their homogeneous counterpart. Our emphasis is on results that deal with Semidefinite Programming, SDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Similarly, we can use the (2,2) position rather than the (3,3) position.

References

  1. Abrams, R.A., Ben-Israel, A.: Optimality conditions and recession cones. Oper. Res. 23(3), 549–553 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program., Ser. B 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, E.D., Roos, C., Terlaky, T.: Notes on duality in second order and p-order cone optimization. Optimization 51(4), 627–643 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem. Discrete Appl. Math. 119(1–2), 79–106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics. Springer, New York (2003)

    MATH  Google Scholar 

  7. Barker, G.P.: The lattice of faces of a finite dimensional cone. Linear Algebra Appl. 7, 71–82 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barker, G.P.: Faces and duality in convex cones. Linear Multilinear Algebra 6(3), 161–169 (1978/1979)

    Article  MathSciNet  Google Scholar 

  9. Ben-Israel, A., Ben-Tal, A., Zlobec, S.: Optimality in Nonlinear Programming: A Feasible Directions Approach. Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  10. Berman, A.: Cones, Matrices and Mathematical Programming. Springer, Berlin, New York (1973)

    Book  MATH  Google Scholar 

  11. Bertsekas, D.P., Tseng, P.: Set intersection theorems and existence of optimal solutions. Math. Program. 110(2), 287–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borwein, J.M., Moors, W.B.: Stability of closedness of convex cones under linear mappings. J. Convex Anal. 16, 699–705 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Borwein, J.M., Wolkowicz, H.: Characterization of optimality for the abstract convex program with finite-dimensional range. J. Aust. Math. Soc. A 30(4), 390–411 (1980/1981)

    Article  MathSciNet  Google Scholar 

  14. Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone-convex programming problem. J. Aust. Math. Soc. A 30(3), 369–380 (1980/81)

    Article  MathSciNet  Google Scholar 

  15. Borwein, J.M., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83(2), 495–530 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borwein, J.M., Wolkowicz, H.: Characterizations of optimality without constraint qualification for the abstract convex program. Math. Program. Stud. 19, 77–100 (1982)

    Article  MathSciNet  Google Scholar 

  17. Brøndsted, A.: Les faces d’un cône convexe abstrait. C. R. Math. Acad. Sci. Paris, Sér. A-B 280(7), A435–A437 (1975), also see p. Aii

    Google Scholar 

  18. Cheung, Y.-L., Schurr, S., Wolkowicz, H.: Preprocessing and reduction for degenerate semidefinite programs. Technical Report CORR 2011-02, University of Waterloo, Waterloo, Ontario (2011). www.optimization-online.org/DB_HTML/2011/02/2929.html

  19. Chua, C.B.: Relating homogeneous cones and positive definite cones via T-algebras. SIAM J. Optim. 14(2), 500–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chua, C.B., Tunçel, L.: Invariance and efficiency of convex representations. Math. Program. 111(1–2), 113–140 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Math. Soc. Series of Monographs and Advanced Texts. Wiley, New York (1983)

    MATH  Google Scholar 

  22. Deutsch, F.: The role of the strong conical hull intersection property in convex optimization and approximation. In: Approximation Theory IX, vol. I, Nashville, TN, 1998. Innov. Appl. Math., pp. 105–112. Vanderbilt Univ. Press, Nashville (1998)

    Google Scholar 

  23. Duffin, R.J.: Infinite programs. In: Tucker, A.W. (ed.) Linear Equalities and Related Systems, pp. 157–170. Princeton University Press, Princeton (1956)

    Google Scholar 

  24. Faybusovich, L.: On Nesterov’s approach to semi-infinite programming. Acta Appl. Math. 74(2), 195–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Freund, R.M., Ordóñez, F., Toh, K.C.: Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. USC-ISE working paper #2005-02, MIT (2005). www-rcf.usc.edu/~fordon/

  26. Freund, R.M., Vera, J.R.: Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM J. Optim. 10(1), 155–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fujisawa, K., Fukuda, M., Nakata, K.: Preprocessing sparse semidefinite programs via matrix completion. Optim. Methods Softw. 21(1), 17–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldman, A.J., Tucker, A.W.: Theory of linear programming. In: Linear Inequalities and Related Systems, pp. 53–97. Annals of Mathematics Studies, vol. 38. Princeton University Press, Princeton, (1956)

    Google Scholar 

  29. Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point method. INFORMS J. Comput. 9(1), 73–91 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gonzalez-Lima, M., Wei, H., Wolkowicz, H.: A stable primal-dual approach for linear programming under nondegeneracy assumptions. Comput. Optim. Appl. 44(2), 213–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guignard, M.: Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7(2), 232–241 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  32. Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12(4), 1090–1099 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Helmberg, C.: Semidefinite programming. Eur. J. Oper. Res. 137(3), 461–482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin, (1975)

    Book  MATH  Google Scholar 

  35. Jeyakumar, V., Lee, G.M.: Complete characterizations of stable Farkas’ lemma and cone-convex programming duality. Math. Program. 114(2, Ser. A), 335–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jeyakumar, V., Li, G.Y.: Stable zero duality gaps in convex programming: complete dual characterisations with applications to semidefinite programs. J. Math. Anal. Appl. 360(1), 156–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ji, J., Potra, F.A., Sheng, R.: On the local convergence of a predictor-corrector method for semidefinite programming. SIAM J. Optim. 10(1), 195–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jibetean, D., Laurent, M.: Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koberstein, A., Suhl, U.H.: Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms. Comput. Optim. Appl. 37(1), 49–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kojima, M., Shida, M., Shindoh, S.: Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Technical report, Dept. of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan (1996)

  41. Krishnan, K., Terlaky, T.: Interior point and semidefinite approaches in combinatorial optimization. In: Graph theory and combinatorial optimization. GERAD 25th Anniv. Ser, vol. 8, pp. 101–157. Springer, New York (2005)

    Chapter  Google Scholar 

  42. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20(5), 2679–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kurcyusz, S.: On the existence of Lagrange multipliers for infinite dimensional extremal problems. Bull. Acad. Pol. Sci., Sér. Sci. Tech. 22, 799–802 (1974)

    MathSciNet  MATH  Google Scholar 

  44. Kurcyusz, S.: On the existence and non-existence Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 20(1), 81–110 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  47. Luo, Z.-Q., Sturm, J.F., Zhang, S.: Superlinear convergence of a symmetric primal-dual path-following algorithm for semidefinite programming. SIAM J. Optim. 8, 59–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mészáros, C., Gondzio, J.: Addendum to: “Presolve analysis of linear programs prior to applying an interior point method” [INFORMS J. Comput. 9 (1997), no. 1, 73–91; MR 99a:90120] by Gondzio. INFORMS J. Comput. 13(2), 169–170 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Monteiro, R.D.C.: First- and second-order methods for semidefinite programming. Math. Program., Ser. B 97(1–2), 209–244 (2003)

    MathSciNet  MATH  Google Scholar 

  50. Nesterov, Y.E., Nemirovski, A.S.: Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  51. Pais, A.G.: Cone extreme points and faces. J. Math. Anal. Appl. 126(1), 223–228 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pataki, G.: On the closedness of the linear image of a closed convex cone. Math. Oper. Res. 32(2), 395–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pólik, I., Terlaky, T.: Exact duality for optimization over symmetric cones. Technical report, McMaster University, Hamilton, Ontario, Canada (2007)

  54. Potra, F.A., Sheng, R.: Superlinear convergence of a predictor-corrector method for semidefinite programming without shrinking central path neighborhood. Bull. Math. Soc. Sci. Math. Roum. 43(91)(2), 107–124 (2000)

    MathSciNet  Google Scholar 

  55. Pshenichniyi, B.N.: Necessary conditions for an extremum. Pure and Applied Mathematics, vol. 4. Dekker, New York (1971). Translated from the Russian by K. Makowski. Translation edited by L.W. Neustadt

    Google Scholar 

  56. Ramana, M.V.: An algorithmic analysis of multiquadratic and semidefinite programming problems. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD (1993)

  57. Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77(2), 129–162 (1997)

    MathSciNet  MATH  Google Scholar 

  58. Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semidefinite programming. SIAM J. Optim. 7(3), 641–662 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Renegar, J.: Some perturbation theory for linear programming. Math. Program., Ser. A 65(1), 73–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  60. Renegar, J.: Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5(3), 506–524 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program., Ser. A 70(3), 279–351 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  62. Robinson, S.M.: Stability theorems for systems of inequalities, part ii: differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks

    Google Scholar 

  64. Schurr, S.P.: Private communication. Technical report, University of Waterloo, Waterloo, ON (2008)

  65. Shapiro, A., Nemirovskii, A.: Duality of linear conic problems. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (2003)

  66. Shapiro, A., Scheinberg, K.: Duality and optimality conditions. In: Handbook of Semidefinite Programming. Internat. Ser. Oper. Res. Management Sci., vol. 27, pp. 67–110. Kluwer Academic, Boston (2000)

    Chapter  Google Scholar 

  67. Todd, M.J.: Semidefinite programming. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tunçel, L.: On the Slater condition for the SDP relaxations of nonconvex sets. Oper. Res. Lett. 29(4), 181–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Waksman, Z., Epelman, M.: On point classification in convex sets. Math. Scand. 38(1), 83–96 (1976)

    MathSciNet  MATH  Google Scholar 

  71. Wei, H., Wolkowicz, H.: Generating and solving hard instances in semidefinite programming. Math. Program. 125(1), 31–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wolkowicz, H.: Some applications of optimization in matrix theory. Linear Algebra Appl. 40, 101–118 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic, Boston (2000)

    Google Scholar 

  74. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96/97, 461–479 (1999)

    Article  MathSciNet  Google Scholar 

  75. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zuluaga, L.F., Vera, J., Peña, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research supported by The Natural Sciences and Engineering Research Council of Canada. Part of this paper is based on work presented at: ICCOPT II & MOPTA-07, McMaster University, Hamilton, 2007; 9th SIAM Conference on Optimization, Boston, May, 2008; and HPOPT 10, Tilburg, 2008. The authors would like to acknowledge Simon Schurr (Univ. of Waterloo) for many helpful conversations, as well as for other contributions to this paper. URL for paper: orion.math.uwaterloo.ca/~hwolkowi/henry/reports/ABSTRACTS.html

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Wolkowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunçel, L., Wolkowicz, H. Strong duality and minimal representations for cone optimization. Comput Optim Appl 53, 619–648 (2012). https://doi.org/10.1007/s10589-012-9480-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9480-0

Keywords

Navigation