Skip to main content

Advertisement

Log in

Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Activated α5β1 integrin occurs specifically on tumor cells and on endothelial cells of tumor-associated vasculature, and plays a key role in invasion and metastasis. The PHSCN peptide (Ac-PHSCN-NH2) preferentially binds activated α5β1, to block invasion in vitro, and inhibit growth, metastasis and tumor recurrence in preclinical models of prostate cancer. In Phase I clinical trial, systemic Ac-PHSCN-NH2 monotherapy was well tolerated, and metastatic disease progression was prevented for 4–14 months in one-third of treated patients. We have developed a significantly more potent derivative, the PHSCN-polylysine dendrimer (Ac-PHSCNGGK-MAP). Using in vitro invasion assays with naturally serum-free basement membranes, we observed that the PHSCN dendrimer was 130- to 1900-fold more potent than the PHSCN peptide at blocking α5β1-mediated invasion by DU 145 and PC-3 human prostate cancer cells, whether invasion was induced by serum, or by the Ac-PHSRN-NH2 peptide, under serum-free conditions. The PHSCN dendrimer was also approximately 800 times more effective than PHSCN peptide at preventing DU 145 and PC-3 extravasation in the lungs of athymic mice. Chou-Talalay analysis suggested that inhibition of both invasion in vitro and extravasation in vivo by the PHSCN dendrimer are highly synergistic. We found that many extravasated DU 145 and PC-3 cells go onto develop into metastatic colonies, and that a single pretreatment with the PHSCN dendrimer was 100-fold more affective than the PHSCN peptide at reducing lung colony formation. Since many patients newly diagnosed with prostate cancer already have locally advanced or metastatic disease, the availability of a well-tolerated, nontoxic systemic therapy, like the PHSCN dendrimer, which prevents metastatic progression by inhibiting invasion, could be very beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MAP:

Multiantigenic peptide

SF:

Serum-free

FBS:

Fetal bovine serum

CI:

Combination index

DRI:

Dose reduction index

Ova:

Ovalbumin

EDC:

1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

HBSS:

Hanks buffered salt solution

MALDI:

Matrix assisted laser desorption/ionization

MMP-1:

Matrix metalloproteinase-1

ELISA:

Enzyme-linked immunoabsorbant assay

DiI:

1,1′-dilinoleyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate

MAb:

Monoclonal antibody

SD:

First standard deviation

SEM:

Standard error of mean

PECAM-1:

Platelet endothelial cell adhesion molecule-1

O.C.T.:

Optimal cutting temperature

FITC:

Fluorescein isothiocyanate

References

  1. Zeng ZZ, Yao H, Staszewski ED, Rockwood KF, Markwart SM, Fay KS, Spalding AC, Livant DL (2009) Alpha(5)beta(1) Integrin ligand PHSRN induces invasion and alpha(5) mRNA in endothelial cells to stimulate Angiogenesis. Transl Oncol 2:8–20

    PubMed  Google Scholar 

  2. Livant DL, Brabec RK, Pienta KJ, Allen DL, Kurachi K, Markwart S, Upadhyaya A (2000) Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res 60:309–320

    CAS  PubMed  Google Scholar 

  3. Zeng ZZ, Jia Y, Hahn NJ, Markwart SM, Rockwood KF, Livant DL (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 66:8091–8099

    Article  CAS  PubMed  Google Scholar 

  4. Fornaro M, Manes T, Languino LR (2001) Integrins and prostate cancer metastases. Cancer Metastasis Rev 20:321–331

    Article  CAS  PubMed  Google Scholar 

  5. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324

    Article  CAS  PubMed  Google Scholar 

  6. Guba M, Bosserhoff AK, Steinbauer M, Abels C, Anthuber M, Buettner R, Jauch KW (2000) Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo. Br J Cancer 83:1216–1222

    Article  CAS  PubMed  Google Scholar 

  7. Matsuura N, Puzon-McLaughlin W, Irie A, Morikawa Y, Kakudo K, Takada Y (1996) Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells. Am J Pathol 148:55–61

    CAS  PubMed  Google Scholar 

  8. Livant DL, Brabec RK, Kurachi K, Allen DL, Wu Y, Haaseth R, Andrews P, Ethier SP, Markwart S (2000) The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest 105:1537–1545

    Article  CAS  PubMed  Google Scholar 

  9. Aota S, Nagai T, Yamada KM (1991) Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem 266:15938–15943

    CAS  PubMed  Google Scholar 

  10. Mould AP, Askari JA, Aota S, Yamada KM, Irie A, Takada Y, Mardon HJ, Humphries MJ (1997) Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. J Biol Chem 272:17283–17292

    Article  CAS  PubMed  Google Scholar 

  11. Cianfrocca ME, Kimmel KA, Gallo J, Cardoso T, Brown MM, Hudes G, Lewis N, Weiner L, Lam GN, Brown SC, Shaw DE, Mazar AP, Cohen RB (2006) Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer 94:1621–1626

    CAS  PubMed  Google Scholar 

  12. Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Donate F, Shaw DE, Mazar AP, Rabbani SA (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 5:2271–2280

    Article  CAS  PubMed  Google Scholar 

  13. Stoeltzing O, Liu W, Reinmuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM (2003) Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104:496–503

    Article  CAS  PubMed  Google Scholar 

  14. van Golen KL, Bao L, Brewer GJ, Pienta KJ, Kamradt JM, Livant DL, Merajver SD (2002) Suppression of tumor recurrence and metastasis by a combination of the PHSCN sequence and the antiangiogenic compound tetrathiomolybdate in prostate carcinoma. Neoplasia 4:373–379

    Article  PubMed  CAS  Google Scholar 

  15. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21:274–281

    Article  CAS  PubMed  Google Scholar 

  16. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16–23

    CAS  PubMed  Google Scholar 

  17. Jia Y, Zeng ZZ, Markwart SM, Rockwood KF, Ignatoski KM, Ethier SP, Livant DL (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64:8674–8681

    Article  CAS  PubMed  Google Scholar 

  18. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  PubMed  Google Scholar 

  19. Remmer H, Fields G (2000) Chemical synthesis of peptides. In: Reid RE (ed) Peptide and protein drug analysis. Marcel Dekker, Inc., New York

    Google Scholar 

  20. Grant GA (2002) Evaluation of the synthetic product. In: Grant GA (ed) Synthetic peptides a user’s guide. Oxford University Press, Oxford, New York

    Google Scholar 

  21. DeSilva NS, Ofek I, Crouch EC (2003) Interactions of surfactant protein D with fatty acids. Am J Respir Cell Mol Biol 29:757–770

    Article  CAS  PubMed  Google Scholar 

  22. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    CAS  PubMed  Google Scholar 

  23. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  24. Ren H, Tan X, Dong Y, Giese A, Chou TC, Rainov N, Yang B (2009) Differential effect of imatinib and synergism of combination treatment with chemotherapeutic agents in malignant glioma cells. Basic Clin Pharmacol Toxicol 104:241–252

    Article  CAS  PubMed  Google Scholar 

  25. Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713

    CAS  PubMed  Google Scholar 

  26. Molnar Z, Blakey D, Bystron I (2006) Tract-tracing in developing systems and in postmortem human material using carbocyanine dyes. In: Záborszky L, Lanciego JL, Wouterlood FG (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer Science + Business Media, Inc., Boston, MA

    Google Scholar 

  27. Collazo A, Bronner-Fraser M, Fraser SE (1993) Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118:363–376

    CAS  PubMed  Google Scholar 

  28. Yao H, Dashner EJ, van Golen CM, van Golen KL (2006) RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene 25:2285–2296

    Article  CAS  PubMed  Google Scholar 

  29. Baldwin HS, Shen HM, Yan HC, DeLisser HM, Chung A, Mickanin C, Trask T, Kirschbaum NE, Newman PJ, Albelda SM et al (1994) Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120:2539–2553

    CAS  PubMed  Google Scholar 

  30. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massague J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104:19506–19511

    Article  CAS  PubMed  Google Scholar 

  31. Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329

    Article  CAS  PubMed  Google Scholar 

  32. Rowland-Goldsmith MA, Maruyama H, Matsuda K, Idezawa T, Ralli M, Ralli S, Korc M (2002) Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 1:161–167

    CAS  PubMed  Google Scholar 

  33. Lawrence TS, Davis MA, Maybaum J, Mukhopadhyay SK, Stetson PL, Normolle DP, McKeever PE, Ensminger WD (1992) The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res 52:3698–3704

    CAS  PubMed  Google Scholar 

  34. Cesano A, Visonneau S, Santoli D (1998) TALL-104 cell therapy of human solid tumors implanted in immunodeficient (SCID) mice. Anticancer Res 18:2289–2295

    CAS  PubMed  Google Scholar 

  35. Rephaeli A, Blank-Porat D, Tarasenko N, Entin-Meer M, Levovich I, Cutts SM, Phillips DR, Malik Z, Nudelman A (2005) In vivo and in vitro antitumor activity of butyroyloxymethyl-diethyl phosphate (AN-7), a histone deacetylase inhibitor, in human prostate cancer. Int J Cancer 116:226–235

    Article  CAS  PubMed  Google Scholar 

  36. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  37. Narain V, Cher ML, Wood DP Jr (2002) Prostate cancer diagnosis, staging and survival. Cancer Metastasis Rev 21:17–27

    Article  PubMed  Google Scholar 

  38. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    Article  CAS  PubMed  Google Scholar 

  39. Plesnicar S (1985) The course of metastatic disease originating from carcinoma of the prostate. Clin Exp Metastasis 3:103–110

    Article  CAS  PubMed  Google Scholar 

  40. Bova S, Kirk M, Chan-Tack M, LeCartes M (2001) Lethal metastatic human prostate cancer. Autopsy studies and characteristics of metastasis. In: Chung LWK, Isaacs WB, Simons JW (eds) Prostate cancer: biology, genetics and the new therapeutics. Humana Press, Totowa, NJ

    Google Scholar 

  41. Elkin M, Mueller HP (1954) Metastases from cancer of the prostate; autopsy and roentgenological findings. Cancer 7:1246–1248

    Article  CAS  PubMed  Google Scholar 

  42. de Paso Mora PG, Rios BJ, Pascual Pareja FJ, Castillo Torres C, Pinto Marin A, Sendino Revuelta A, Vazquez RJ (2005) Pleural effusion as presentation of metastatic adenocarcinoma of prostate. South Med J 98:959–960

    Article  PubMed  Google Scholar 

  43. Pulukuri SM, Rao JS (2008) Matrix metalloproteinase-1 promotes prostate tumor growth and metastasis. Int J Oncol 32:757–765

    CAS  PubMed  Google Scholar 

  44. Nomizu M, Yamamura K, Kleinman HK, Yamada Y (1993) Multimeric forms of Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide enhance the inhibition of tumor growth and metastasis. Cancer Res 53:3459–3461

    CAS  PubMed  Google Scholar 

  45. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879

    Article  CAS  PubMed  Google Scholar 

  46. Livant DL (2005) Targeting invasion induction as a therapeutic strategy for the treatment of cancer. Curr Cancer Drug Targets 5:489–503

    Article  CAS  PubMed  Google Scholar 

  47. Greiling D, Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 110(Pt 7):861–870

    CAS  PubMed  Google Scholar 

  48. Grinnell F, Zhu M (1994) Identification of neutrophil elastase as the proteinase in burn wound fluid responsible for degradation of fibronectin. J Invest Dermatol 103:155–161

    Article  CAS  PubMed  Google Scholar 

  49. Rokhlin OW, Cohen MB (1995) Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate 26:205–212

    Article  CAS  PubMed  Google Scholar 

  50. Woods Ignatoski KM, Grewal NK, Markwart S, Livant DL, Ethier SP (2003) p38MAPK induces cell surface alpha4 integrin downregulation to facilitate erbB-2-mediated invasion. Neoplasia 5:128–134

    CAS  PubMed  Google Scholar 

  51. Mosher DF (1984) Physiology of fibronectin. Annu Rev Med 35:561–575

    Article  CAS  PubMed  Google Scholar 

  52. Ruoslahti E, Hayman EG, Pierschbacher M, Engvall E (1982) Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol 82(Pt A):803–831

    Article  CAS  PubMed  Google Scholar 

  53. Ignatoski KM, Maehama T, Markwart SM, Dixon JE, Livant DL, Ethier SP (2000) ERBB-2 overexpression confers PI 3′ kinase-dependent invasion capacity on human mammary epithelial cells. Br J Cancer 82:666–674

    Article  CAS  PubMed  Google Scholar 

  54. Woods Ignatoski KM, Livant DL, Markwart S, Grewal NK, Ethier SP (2003) The role of phosphatidylinositol 3′-kinase and its downstream signals in erbB-2-mediated transformation. Mol Cancer Res 1:551–560

    CAS  PubMed  Google Scholar 

  55. Fassina G, Corti A, Cassani G (1992) Affinity enhancement of complementary peptide recognition. Int J Pept Protein Res 39:549–556

    Article  CAS  PubMed  Google Scholar 

  56. Sinnis P, Clavijo P, Fenyo D, Chait BT, Cerami C, Nussenzweig V (1994) Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J Exp Med 180:297–306

    Article  CAS  PubMed  Google Scholar 

  57. Carlier E, Mabrouk K, Moulard M, Fajloun Z, Rochat H, De Waard M, Sabatier JM (2000) Ion channel activation by SPC3, a peptide derived from the HIV-1 gp120 V3 loop. J Pept Res 56:427–437

    Article  CAS  PubMed  Google Scholar 

  58. Yahi N, Sabatier JM, Baghdiguian S, Gonzalez-Scarano F, Fantini J (1995) Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line. J Virol 69:320–325

    CAS  PubMed  Google Scholar 

  59. Tantivejkul K, Kalikin LM, Pienta KJ (2004) Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 91:706–717

    Article  CAS  PubMed  Google Scholar 

  60. Romanov VI, Goligorsky MS (1999) RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate 39:108–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Philip Andrews for his suggestion of utilizing MAP peptides. All peptides were synthesized by the University of Michigan Protein Structure Facility (Dr. Henriette A. Remmer). The masses of the MAP peptides were verified by Angela Walker, Ph.D of the Michigan Proteome Consortium (Dr. Philip C. Andrews). This research was supported by the National Institutes of Health, R01 CA119007, “PHSCN Therapies to Prevent Prostate Cancer Progression”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Livant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, H., Veine, D.M., Zeng, ZZ. et al. Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis 27, 173–184 (2010). https://doi.org/10.1007/s10585-010-9316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9316-1

Keywords

Navigation