Skip to main content

Advertisement

Log in

Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

EphA2 is a transmembrane receptor tyrosine kinase that functions in the regulation of cell growth, survival, angiogenesis, and migration and EphA2 targeting has been proposed as a novel therapeutic strategy for neoplasms that overexpress this protein. EphA2 overexpression has been correlated with increased invasive and metastatic ability in pancreatic cancer cell lines. However, the patterns of EphA2 expression in human pancreatic cancers and associated metastases is unknown, as are the genetics of EphA2 in this tumor type. We collected clinicopathologic data and paraffin-embedded materials from 98 patients with primary and/or metastatic pancreatic cancer and performed immunohistochemical labeling for EphA2 protein. EphA2 protein immunolabeling was found in 207 of 219 samples (95%). The expression was predominantly cytoplasmic, although predominant membranous staining was observed in a minority of cases. When evaluated specifically for labeling intensity, primary and metastatic carcinomas were more strongly positive compared to benign ducts and PanIN lesions (P < 0.00001 and P < 0.01, respectively) and poorly differentiated carcinomas were more strongly positive for EphA2 than well and moderately differentiated tumors (P < 0.005). When primary carcinomas without metastatic disease were specifically compared to carcinomas with associated metastatic disease, the advanced carcinomas showed relatively less strong positive labeling for EphA2 (P < 0.008). Moreover, decreased EphA2 labeling was more commonly found in liver (P < 0.002), lung (P < 0.004) or peritoneal metastases (P < 0.01) as compared to distant lymph node metastases (P < 0.01). Genetic sequencing of the tyrosine kinase domain of EPHA2 in 22 samples of xenograft enriched pancreatic cancer did not reveal any inactivating mutations. However, EPHA2 amplification was found in 1 of 33 pancreatic cancers corresponding to a lymph node metastasis, indicating EPHA2 genomic amplification may underlie EphA2 overexpression in a minority of patients. Our data confirms that EphA2 is overexpressed in pancreatic cancer, but suggests a relative loss of EphA2 in co-existent pancreatic cancer metastases as well as a role for EPHA2 in organ specific metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walker-Daniels J, Hess AR, Hendrix MJ et al (2003) Differential regulation of EphA2 in normal and malignant cells. Am J Pathol 162:1037–1042

    PubMed  CAS  Google Scholar 

  2. Parri M, Buricchi F, Taddei ML et al (2005) EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase. J Biol Chem 280:34008–34018

    Article  PubMed  CAS  Google Scholar 

  3. Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 10:6316–6324

    PubMed  CAS  Google Scholar 

  4. Rosenberg IM, Goke M, Kanai M et al (1997) Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am J Physiol 273:G824–G832

    PubMed  CAS  Google Scholar 

  5. Pandey A, Shao H, Marks RM et al (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268:567–569

    Article  PubMed  CAS  Google Scholar 

  6. Zantek ND, Azimi M, Fedor-Chaiken M et al (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10:629–638

    PubMed  CAS  Google Scholar 

  7. Zelinski DP, Zantek ND, Stewart JC et al (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306

    PubMed  CAS  Google Scholar 

  8. Duxbury MS, Ito H, Zinner MJ et al (2004) EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 23:1448–1456

    Article  PubMed  CAS  Google Scholar 

  9. Pratt RL, Kinch MS (2002) Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene 21:7690–7699

    Article  PubMed  CAS  Google Scholar 

  10. Kinch MS, Moore MB, Harpole DH Jr (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9:613–618

    PubMed  CAS  Google Scholar 

  11. Hatano M, Eguchi J, Tatsumi T et al (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722

    Article  PubMed  CAS  Google Scholar 

  12. Abraham S, Knapp DW, Cheng L et al (2006) Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res 12:353–360

    Article  PubMed  CAS  Google Scholar 

  13. Wykosky J, Gibo DM, Stanton C et al (2005) EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3:541–551

    Article  PubMed  CAS  Google Scholar 

  14. Xu F, Zhong W, Li J et al (2005) Predictive value of EphA2 and EphrinA-1 expression in oesophageal squamous cell carcinoma. Anticancer Res 25:2943–2950

    PubMed  CAS  Google Scholar 

  15. Han L, Dong Z, Qiao Y et al (2005) The clinical significance of EphA2 and Ephrin A-1 in epithelial ovarian carcinomas. Gynecol Oncol 99:278–286

    Article  PubMed  CAS  Google Scholar 

  16. Herrem CJ, Tatsumi T, Olson KS et al (2005) Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clin Cancer Res 11:226–231

    PubMed  CAS  Google Scholar 

  17. Thaker PH, Deavers M, Celestino J et al (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145–5150

    Article  PubMed  CAS  Google Scholar 

  18. Wu D, Suo Z, Kristensen GB et al (2004) Prognostic value of EphA2 and EphrinA-1 in squamous cell cervical carcinoma. Gynecol Oncol 94:312–319

    Article  PubMed  CAS  Google Scholar 

  19. Saito T, Masuda N, Miyazaki T et al (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11:605–611

    PubMed  CAS  Google Scholar 

  20. Duxbury MS, Ito H, Zinner MJ et al (2004) Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 320:1096–1102

    Article  PubMed  CAS  Google Scholar 

  21. Embuscado EE, Laheru D, Ricci F et al (2005) Immortalizing the complexity of cancer metastasis: genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biol Ther 4:548–554

    Article  PubMed  CAS  Google Scholar 

  22. Moore PS, Sipos B, Orlandini S et al (2001) Genetic profile of 22 pancreatic carcinoma cell lines: Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439:798–802

    PubMed  CAS  Google Scholar 

  23. Sun C, Yamato T, Furukawa T et al (2001) Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep 8:89–92

    PubMed  CAS  Google Scholar 

  24. Brantley-Sieders DM, Fang WB, Hicks DJ et al (2005) Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J 19:1884–1886

    PubMed  CAS  Google Scholar 

  25. Fang WB, Brantley-Sieders DM, Parker MA et al (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24:7859–7868

    Article  PubMed  CAS  Google Scholar 

  26. Huusko P, Ponciano-Jackson D, Wolf M et al (2004) Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36:979–983

    Article  PubMed  CAS  Google Scholar 

  27. Bardelli A, Parsons DW, Silliman N et al (2003) Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300:949

    Article  PubMed  CAS  Google Scholar 

  28. Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  29. Laheru D, Yeo CJ (2005) Role of adjuvant therapy in the management of pancreatic cancer. Adv Surg 39:223–244

    Article  PubMed  Google Scholar 

  30. Carles-Kinch K, Kilpatrick KE, Stewart JC et al (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62:2840–2847

    PubMed  CAS  Google Scholar 

  31. Noblitt LW, Bangari DS, Shukla S et al (2004) Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 11:757–766

    Article  PubMed  CAS  Google Scholar 

  32. Griffin CA, Hruban RH, Morsberger LA et al (1995) Consistent chromosome abnormalities in adenocarcinoma of the pancreas. Cancer Res 55:2394–2399

    PubMed  CAS  Google Scholar 

  33. Johansson B, Bardi G, Heim S et al (1992) Nonrandom chromosomal rearrangements in pancreatic carcinomas. Cancer 69:1674–1681

    Article  PubMed  CAS  Google Scholar 

  34. Piaskowski S, Rieske P, Szybka M et al (2005) GADD45A and EPB41 as tumor suppressor genes in meningioma pathogenesis. Cancer Genet Cytogenet 162:63–67

    Article  PubMed  CAS  Google Scholar 

  35. White PS, Thompson PM, Gotoh T et al (2005) Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24:2684–2694

    Article  PubMed  CAS  Google Scholar 

  36. Brantley-Sieders DM, Caughron J, Hicks D et al (2004) EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci 117:2037–2049

    Article  PubMed  CAS  Google Scholar 

  37. Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19:5614–5619

    Article  PubMed  CAS  Google Scholar 

  38. Walker-Daniels J, Riese DJ, Kinch MS (2002) c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 1:79–87

    PubMed  CAS  Google Scholar 

  39. Davis S, Gale NW, Aldrich TH et al (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Article  PubMed  CAS  Google Scholar 

  40. Nichols LS, Ashfaq R, Iacobuzio-Donahue CA (2004) Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. Am J Clin Pathol 121:226–230

    Article  PubMed  CAS  Google Scholar 

  41. Ryu B, Jones J, Hollingsworth MA et al: (2001) Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res 61:1833–1838

    PubMed  CAS  Google Scholar 

  42. Ryu B, Jones J, Blades NJ et al (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 62:819–826

    PubMed  CAS  Google Scholar 

  43. Tanaka M, Kamata R, Sakai R (2005) EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem 280:42375–42382

    Article  PubMed  CAS  Google Scholar 

  44. Kikawa KD, Vidale DR, Van Etten RL et al (2002) Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem 277:39274–39279

    Article  PubMed  CAS  Google Scholar 

  45. Hafner C, Schmitz G, Meyer S et al (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by CA106610 (C.I.D.), a Career Development Award from the NIH SPORE (Specialized Programs of Research Excellence) in Gastrointestinal Cancer Grant CA62924 (C.I.D.), The George Rubis Family, The Jeff Zgonina Fund for Pancreatic Cancer Research, The Joseph C. Monastra Fund for Pancreatic Cancer Research, The Michael Rolfe Foundation and Sigma Beta Sorority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Iacobuzio-Donahue.

Additional information

Shiyama V. Mudali and Baojin Fu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudali, S.V., Fu, B., Lakkur, S.S. et al. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis 23, 357–365 (2006). https://doi.org/10.1007/s10585-006-9045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9045-7

Keywords

Navigation