Skip to main content

Advertisement

Log in

Rat Models of Bone Metastases

  • REVIEW
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone metastases occur frequently in patients with advanced breast or prostate cancer. Bone metastases can be predominantly osteolytic, osteoblastic or mixed. Studies with animal models allow advances in understanding the molecular basis for bone metastases and provide new targets for therapy. Several animal models have been developed in rat with different pathophysiologies; they required injection or implantation of neoplastic cells into orthotopic locations, bones or the left ventricle of the heart. Several specific strains of rat have an increased incidence of spontaneous tumors. Carcinomas can be induced by either chemicals or physical agents. However, the most used and convenient way to induce bone metastases is a syngeneic transmission. MAT-Ly-Lu cells have been used in several models using Copenhagen rats to induce osteoblastic bone lesions. PA-III cells derived from Pollard tumors can also produce a combination of osteolytic and osteoblastic reactions at the site of transplantation. Osteolytic bone lesions can be obtained with an injection of Walker cells. The use of 13762 or c-SST2 cells allows also leads to osteolysis. Human xenografts can only be used in nude animals. It is essential to validate and correctly interpret the lesions in several models of bone metastasis. No animal model is sufficient by itself to represent the clinical findings observed in humans. The use of models developed in different species should be more predictive and bring a beam of arguments for a better knowledge of pathophysiological and therapeutic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593

    Article  PubMed  CAS  Google Scholar 

  2. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176

    Article  PubMed  CAS  Google Scholar 

  3. Roodman GD (2003) Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer 97(3 Suppl):733–738

    Article  Google Scholar 

  4. Keller ET, Zhang J, Cooper CR et al (2001) Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 20(3–4):333–349

    Article  PubMed  CAS  Google Scholar 

  5. Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80(8 Suppl):1529–1537

    Article  PubMed  CAS  Google Scholar 

  6. Guise TA, Mundy GR (1998) Cancer and bone. Endocrine Rev 19:18–54

    Article  CAS  Google Scholar 

  7. Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88(12 Suppl):2892–2898

    Article  PubMed  CAS  Google Scholar 

  8. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  PubMed  CAS  Google Scholar 

  9. Liepe K, Geidel H, Haase M et al (2005) New model for the induction of osteoblastic bone metastases in rat. Anticancer Res 25(2A):1067–1073

    PubMed  CAS  Google Scholar 

  10. Kurth AA, Muller R (2001) The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model. Skeletal Radiol 30(2):94–98

    Article  PubMed  CAS  Google Scholar 

  11. Fogelman I, Cook G, Israel O et al (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    Article  PubMed  Google Scholar 

  12. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5(10):796–806

    Article  PubMed  CAS  Google Scholar 

  13. Fournier P, Boissier S, Filleur S et al (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538–6544

    PubMed  CAS  Google Scholar 

  14. Tennekes H, Gembardt C, Dammann M et al (2004) The stability of historical control data for common neoplasms in laboratory rats: adrenal gland (medulla), mammary gland, liver, endocrine pancreas, and pituitary gland. Regul Toxicol Pharmacol 40(1):18–27

    Article  PubMed  Google Scholar 

  15. Gould MN (1995) Rodent models for the study of etiology, prevention and treatment of breast cancer. Semin Cancer Biol 6(3):147–152

    Article  PubMed  CAS  Google Scholar 

  16. Rosol TJ, Tannehill-Gregg SH, LeRoy BE et al (2003) Animal models of bone metastasis. Cancer 97(3 Suppl):748–757

    Article  PubMed  Google Scholar 

  17. Imaoka T, Nishimura M, Teramoto A et al (2005) Cooperative induction of rat mammary cancer by radiation and 1-methyl-1-nitrosourea via the oncogenic pathways involving c-Myc activation and H-ras mutation. Int J Cancer 115(2):187–193

    Article  PubMed  CAS  Google Scholar 

  18. Pollard M, Wolter WR, Sun L (2000) Prostate-seminal vesicle cancers induced in noble rats. Prostate 43(1):71–74

    Article  PubMed  CAS  Google Scholar 

  19. Pollard M, Luckert PH, Snyder DL (1989) The promotional effect of testosterone on induction of prostate-cancer in MNU-sensitized L-W rats. Cancer Lett 45(3):209–212

    Article  PubMed  CAS  Google Scholar 

  20. Geldof AA, Rao BR (1988) Doxorubicin treatment increases metastasis of prostate tumor (R3327-MatLyLu). Anticancer Res 8(6):1335–1339

    PubMed  CAS  Google Scholar 

  21. Geldof AA, Rao BR (1990) Factors in prostate cancer metastasis. Anticancer Res 10(5A):1303–1306

    PubMed  CAS  Google Scholar 

  22. Geldof AA, Rao BR (1990) Prostatic tumor (R3327) skeletal metastasis. Prostate 16(4):279–290

    Article  PubMed  CAS  Google Scholar 

  23. Geldof AA, van den Tillaar PL, Newling DW et al (1997) Radionuclide therapy for prostate cancer lumbar metastasis prolongs symptom-free survival in a rat model. Urology 49(5):795–801

    Article  PubMed  CAS  Google Scholar 

  24. Sun YC, Geldof AA, Newling DW et al (1992) Progression delay of prostate tumor skeletal metastasis effects by bisphosphonates. J Urol 148(4):1270–1273

    PubMed  CAS  Google Scholar 

  25. Haq M, Goltzman D, Tremblay G et al (1992) Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 52(17):4613–4619

    PubMed  CAS  Google Scholar 

  26. Achbarou A, Kaiser S, Tremblay G et al (1994) Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res 54(9):2372–2377

    PubMed  CAS  Google Scholar 

  27. Rabbani SA, Gladu J, Harakidas P et al (1999) Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo. Int J Cancer 80(2):257–264

    Article  PubMed  CAS  Google Scholar 

  28. Koutsilieris M (1992) PA-III rat prostate adenocarcinoma cells (review). In Vivo 6(2):199–203

    PubMed  CAS  Google Scholar 

  29. Koutsilieris M (1995) Skeletal metastases in advanced prostate cancer: cell biology and therapy. Crit Rev Oncol Hematol 18(1):51–64

    Article  PubMed  CAS  Google Scholar 

  30. Koutsilieris M, Frenette G, Lazure C et al (1993) Urokinase-type plasminogen activator: a paracrine factor regulating the bioavailability of IGFs in PA-III cell-induced osteoblastic metastases. Anticancer Res 13(2):481–486

    PubMed  CAS  Google Scholar 

  31. Pollard M (1996) Thalidomide promotes metastasis of prostate adenocarcinoma cells (PA-III) in L-W rats. Cancer Lett 101(1):21–24

    Article  PubMed  CAS  Google Scholar 

  32. Polychronakos C, Janthly U, Lehoux JG et al (1991) Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: characterization of the receptors involved. Prostate 19(4):313–321

    Article  PubMed  CAS  Google Scholar 

  33. Simpkins H, Lehman JM, Mazurkiewicz JE et al (1991) A morphological and phenotypic analysis of Walker 256 cells. Cancer Res 51(4):1334–1338

    PubMed  CAS  Google Scholar 

  34. Fisher ER, Fisher B (1961) Electron microscopic, histologic, and histochemical features of the Walker carcinoma. Cancer Res 21:527–531

    PubMed  CAS  Google Scholar 

  35. Stepensky D, Golomb G, Hoffman A (2002) Pharmacokinetic and pharmacodynamic evaluation of intermittent versus continuous alendronate administration in rats. J Pharm Sci 91(2):508–516

    Article  PubMed  CAS  Google Scholar 

  36. Rizzoli R, Fleisch H (1987) The Walker 256/B carcinosarcoma in thyroparathyroidectomized rats: a model to evaluate␣inhibitors of bone resorption. Calcif Tissue Int 41(4):202–207

    Article  PubMed  CAS  Google Scholar 

  37. Jung A, Bornand J, Mermillod B et al (1984) Inhibition by diphosphonates of bone resorption induced by the Walker tumor of the rat. Cancer Res 44(7):3007–3011

    PubMed  CAS  Google Scholar 

  38. Juraschek M, Seibel MJ, Woitge HW et al (2000) Association between histomorphometry and biochemical markers of bone turnover in a longitudinal rat model of parathyroid hormone-related peptide (PTHrP)-mediated tumor osteolysis. Bone 26(5):475–483

    Article  PubMed  CAS  Google Scholar 

  39. Kostenuik PJ, Orr FW, Suyama K et al (1993) Increased growth rate and tumor burden of spontaneously metastatic Walker 256 cancer cells in the skeleton of bisphosphonate-treated rats. Cancer Res 53(22):5452–5457

    PubMed  CAS  Google Scholar 

  40. Kostenuik PJ, Singh G, Suyama KL et al (1992) Stimulation of bone resorption results in a selective increase in the growth rate of spontaneously metastatic Walker 256 cancer cells in bone. Clin Exp Metastasis 10(6):411–418

    Article  PubMed  CAS  Google Scholar 

  41. Kostenuik PJ, Singh G, Suyama KL et al (1992) A quantitative model for spontaneous bone metastasis: evidence for a mitogenic effect of bone on Walker 256 cancer cells. Clin Exp Metastasis 10(6):403–410

    Article  PubMed  CAS  Google Scholar 

  42. Krempien B, Manegold C (1993) Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate Cl2MBP. Cancer 72(1):91–98

    Article  PubMed  CAS  Google Scholar 

  43. Krempien B, Wingen F, Eichmann T et al (1988) Protective effects of a prophylactic treatment with the bisphosphonate 3-amino-1-hydroxypropane-1,1-bisphosphonic acid on the development of tumor osteopathies in the rat: experimental studies with the Walker carcinosarcoma 256. Oncology 45(1):41–46

    Article  PubMed  CAS  Google Scholar 

  44. Krempien R, Huber PE, Harms W et al (2003) Combination of early bisphosphonate administration and irradiation leads to improved remineralization and restabilization of osteolytic bone metastases in an animal tumor model. Cancer 98(6):1318–1324

    Article  PubMed  CAS  Google Scholar 

  45. Powles TJ, Clark SA, Easty DM et al (1973) The inhibition by aspirin and indomethacin of osteolytic tumor deposits and hypercalcaemia in rats with Walker tumour, and its possible application to human breast cancer. Br J Cancer 28(4):316–321

    PubMed  CAS  Google Scholar 

  46. Wan JM, Istfan NW, Ye SL et al (1995) Insulin-like growth factor-1 is not mitogenic for the Walker-256 carcinosarcoma. Life Sci 56(10):747–756

    Article  PubMed  CAS  Google Scholar 

  47. Wingen F, Eichmann T, Manegold C et al (1986) Effects of new bisphosphonic acids on tumor-induced bone destruction in the rat. J Cancer Res Clin Oncol 111(1):35–41

    Article  PubMed  CAS  Google Scholar 

  48. Cohen-Solal ME, Bouizar Z, Denne MA et al (1995) 1,25 dihydroxyvitamin D and dexamethasone decrease in vivo Walker carcinoma growth, but not parathyroid hormone related protein secretion. Horm Metab Res 27(9):403–407

    PubMed  CAS  Google Scholar 

  49. Municio del Campo MJ, Villameytide ML (1998) Regulation by calcium of the synthesis of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in Walker 256 carcinosarcoma cells: comparison with synthesis regulation from renal phenotype cells (LLC-PK1). Cancer Lett 134(2):147–153

    Article  Google Scholar 

  50. Schilling T, Pecherstorfer M, Blind E et al (1996) Glucocorticoids decrease the production of parathyroid hormone- related protein in vitro but not in vivo in the Walker carcinosarcoma 256 rat model. Bone 18(4):315–319

    Article  PubMed  CAS  Google Scholar 

  51. Kurth AA, Kim SZ, Sedlmeyer I et al (2002) Ibandronate treatment decreases the effects of tumor-associated lesions on bone density and strength in the rat. Bone 30(1):300–306

    Article  PubMed  CAS  Google Scholar 

  52. Kurth AH, Wang C, Hayes WC et al (2001) The evaluation of a rat model for the analysis of densitometric and biomechanical properties of tumor-induced osteolysis. J Orthop Res 19(2):200–205

    Article  PubMed  CAS  Google Scholar 

  53. Alvarez E, Westmore M, Galvin RJ et al (2003) Properties of bisphosphonates in the 13762 rat mammary carcinoma model of tumor-induced bone resorption. Clin Cancer Res 9(15):5705–5713

    PubMed  CAS  Google Scholar 

  54. Marzola P, Ramponi S, Nicolato E et al (2005) Effect of tamoxifen in an experimental model of breast tumor studied by dynamic contrast-enhanced magnetic resonance imaging and different contrast agents. Invest Radiol 40(7):421–429

    Article  PubMed  CAS  Google Scholar 

  55. Stanko RT, Mullick P, Clarke MR et al (1994) Pyruvate inhibits growth of mammary adenocarcinoma 13762 in rats. Cancer Res 54(4):1004–1007

    PubMed  CAS  Google Scholar 

  56. Imai M, Ohta R, Okada N et al (2004) Inhibition of a complement regulator in vivo enhances antibody therapy in a model of mammary adenocarcinoma. Int J Cancer 110(6):875–881

    Article  PubMed  CAS  Google Scholar 

  57. Onyia JE, Galvin RJ, Ma YL et al (2004) Novel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption. J Pharmacol Exp Ther 309(1):369–379

    Article  PubMed  CAS  Google Scholar 

  58. Neri A, Welch D, Kawaguchi T et al (1982) Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. J Natl Cancer Inst 68(3):507–517

    PubMed  CAS  Google Scholar 

  59. Welch DR, Neri A, Nicolson GL (1983) Comparison of ‘spontaneous’ and ‘experimental’ metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones. Invas Metastasis 3(2):65–80

    CAS  Google Scholar 

  60. Tamura H, Ishii S, Ikeda T et al (1996) Therapeutic efficacy of pamidronate in combination with chemotherapy to bone metastasis of breast cancer in a rat model. Surg Oncol 5(3):141–147

    Article  PubMed  CAS  Google Scholar 

  61. Tamura H, Ishii S, Ikeda T et al (1999) The relationship between urinary pyridinoline, deoxypyridinoline and bone metastasis in a rat breast cancer model. Breast Cancer 6(1):23–28

    Article  PubMed  Google Scholar 

  62. Wada N, Ishii S, Ikeda T et al (2004) Inhibition of bone metastasis from breast cancer with pamidronate resulting in reduction of urinary pyridinoline and deoxypyridinoline in a rat model. Breast Cancer 11(3):282–287

    PubMed  Google Scholar 

  63. Henriksen G, Breistol K, Bruland OS et al (2002) Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res 62(11):3120–3125

    PubMed  CAS  Google Scholar 

  64. Neudert M, Fischer C, Krempien B et al (2003) Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. Int J Cancer 107(3):468–477

    Article  PubMed  CAS  Google Scholar 

  65. Bauerle T, Adwan H, Kiessling F et al (2005) Characterization of a rat model with site-specific bone metastasis nduced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 115(2):177–186

    Article  PubMed  CAS  Google Scholar 

  66. Medhurst SJ, Walker K, Bowes M et al (2002) A rat model of bone cancer pain. Pain 96(1–2):129–140

    Article  PubMed  CAS  Google Scholar 

  67. Ekstrom PO, Giercksky KE, Andersen A et al (1997) Intratumoral differences in methotrexate levels within human osteosarcoma xenografts studied by microdialysis. Life Sci 61(19):PL275–PL280

    Article  PubMed  CAS  Google Scholar 

  68. Andersen C, Bagi CM, Adams SW (2003) Intra-tibial injection of human prostate cancer cell line CWR22 elicits osteoblastic response in immunodeficient rats. J Musculoskelet Neuronal Interact 3(2):148–155

    PubMed  CAS  Google Scholar 

  69. Lawson JS, Tran D, Rawlinson WD (2001) From Bittner to Barr: a viral, diet and hormone breast cancer aetiology hypothesis. Breast Cancer Res 3:81–85

    Article  PubMed  CAS  Google Scholar 

  70. Efeyan A, Fabris V, Merani S et al (2004) Establishment of two hormone-responsive mouse mammary carcinoma cell lines derived from a metastatic mammary tumor. Breast Cancer Res Treat 83:233–244

    Article  PubMed  CAS  Google Scholar 

  71. Yoneda T, Michigami T, Yi B et al (1999) Use of bisphosphonates for the treatment of bone metastasis in experimental animal models. Cancer Treat Rev 25(5):293–299

    Article  PubMed  CAS  Google Scholar 

  72. García O, Blanco MD, Martín JA et al (2000) 5-Fluorouracil trapping in poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels: in vitro drug delivery studies. Eur Polym J 36:111–122

    Article  Google Scholar 

  73. Wang HM, Crank S, Oliver G et al (1996) The effect of methotrexate-loaded bone cement on local destruction by the VX2 tumour. J Bone Joint Surg Br 78:14–17

    PubMed  CAS  Google Scholar 

  74. Utvag SE, Korsnes L, Rindal DB et al (2001) Influence of flexible nailing in the later phase of fracture healing: strength and mineralization in rat femora. J Orthop Sci 6:576–584

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Chappard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blouin, S., Baslé, M.F. & Chappard, D. Rat Models of Bone Metastases. Clin Exp Metastasis 22, 605–614 (2005). https://doi.org/10.1007/s10585-006-9002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9002-5

Key words

Navigation