Skip to main content
Log in

Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Over the past decades, rainfall amount and frequency changed considerably on the Tibetan Plateau. However, how altered rainfall pattern affects vegetation growth and phenology in Tibetan alpine grasslands is poorly understood. In this study, we investigated the long-term effects of rainfall amount and frequency on production (i.e., aboveground biomass, AGB) and phenology of three perennial plants in a Tibetan alpine meadow from 1994 to 2005. Growth period (i.e., the dates from greening to senescence) was referred to plant phenology here. Our results showed that annual precipitation and total rainfall from large events (≥ 5 mm per day) were mainly distributed in the growing season, which increased significantly from 1994 to 2005 with more increment in May and July (p < 0.05). Total AGB and growth periods of three plants were linearly correlated with annual precipitation and total rainfall from large events, but have insignificant correlations with total rainfall from small events (< 5 mm per day) and rainfall frequency (including small, large, and all events). The results suggest that aboveground plant production and phenology are more sensitive to changes in large rainfall events (≥ 5 mm per day) than small events (< 5 mm per day) in the alpine meadow ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221–235

    Article  Google Scholar 

  • Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89(8):2140–2153

    Article  Google Scholar 

  • Bai YF, Wang J, Zhang BC, Zhang ZH (2012) Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China. Ecol Res 27(3):615–623

    Google Scholar 

  • Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Chang Biol 13(3):561–576

    Article  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20(2):135–148

    Article  Google Scholar 

  • Cao GM, Lin L, Zhang FW, Li YK, Han DR, Long RJ (2004) A review of maintenance, loss and recovery of stability of alpine Kobresia humilis meadow on Tibetan Plateau. Pratacultural Sci 27(8):34–38

    Google Scholar 

  • China Meteorological Administration (1993) Observation criterion of agricultural meteorology. China Meteorological Press, Beijing 167–174

  • Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1(2):206–215

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11(10):1777–1787

    Article  Google Scholar 

  • Craine JM et al (2012) Timing of climate variability and grassland productivity. Proc Natl Acad Sci U S A 109(9):3401–3405

    Article  Google Scholar 

  • Davison JE, Breshears DD, van Leeuwen WJD, Casady GM (2011) Remotely sensed vegetation phenology and productivity along a climatic gradient: on the value of incorporating the dimension of woody plant cover. Glob Ecol Biogeogr 20(1):101–113

    Article  Google Scholar 

  • Dieleman JA, Verstappen FWA, Kuiper D (1998) Root temperature effects on growth and bud break of Rosa hybrida in relation to cytokinin concentrations in xylem sap. Sci Hortic 76(3–4):183–192

    Article  Google Scholar 

  • Dougherty RL, Lauenroth WK, Singh JS (1996) Response of a grassland cactus to frequency and size of rainfall events in a North American shortgrass steppe. J Ecol 84(2):177–183

    Article  Google Scholar 

  • Du J, Yan P, Dong Y (2011) Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. Int J Climatol 31(8):1153–1165

    Article  Google Scholar 

  • Fang J, Piao S, Zhou L, He J, Wei F, Myneni RB, Tucker CJ, Tan K (2005) Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett 32:L21411. doi:10.1029/2005GL024231

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000) Altering Rainfall Timing and Quantity in a Mesic Grassland Ecosystem: Design and Performance of Rainfall Manipulation Shelters. Ecosystems 3(3):308–319

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137(2):245–251

    Article  Google Scholar 

  • Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW (2008) Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob Chang Biol 14(7):1600–1608

    Google Scholar 

  • Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL (2009) Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc Natl Acad Sci U S A 106(6):1853–1856

    Article  Google Scholar 

  • Gao Q, Li Y, Wan YF, Qin XB, Jiangcun WZ, Liu YH (2009) Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim Chang 97(3):515–528

    Article  Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115(1–2):17–25

    Article  Google Scholar 

  • Grogan J, Schulze M (2012) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in southeastern Amazonia, Brazil. Biotropica 44(3):331–340

    Article  Google Scholar 

  • Huntington TG (2008) CO2 induced suppression of transpiration cannot explain increasing runoff. Hydrol Process 22(2):311–314

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141(2):254–268

    Google Scholar 

  • Intergov. Panel Clim. Change (2007) Working group 1: the physical science basis. Summary for policymakers. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Jenerette GD, Scott RL, Huxman TE (2008) Whole ecosystem metabolic pulses following precipitation events. Funct Ecol 22(5):924–930

    Google Scholar 

  • Jolly WM, Running SW (2004) Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Chang Biol 10(3):303–308

    Article  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SD, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58(9):811–821

    Article  Google Scholar 

  • Liu YA, Wang EL, Yang XG, Wang J (2010) Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob Chang Biol 16(8):2287–2299

    Article  Google Scholar 

  • Loik ME (2007) Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentata. Plant Ecol 191(1):95–108

    Article  Google Scholar 

  • Long RJ, Apori SO, Castro FB, Ørskov ER (1999) Feed value of native forages of the Tibetan Plateau of China. Anim Feed Sci Technol 80(2):101–113

    Article  Google Scholar 

  • Luo T, Pan Y, Ouyang H, Shi P, Luo J, Yu Z, Lu Q (2004) Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecol Biogeogr 13(4):345–358

    Article  Google Scholar 

  • Milchunas DG, Lauenroth WK (2001) Belowground primary production by carbon isotope decay and longterm root biomass dynamics. Ecosystems 4(2):139–150

    Article  Google Scholar 

  • Miranda JD, Padilla FM, Lázaro R, Pugnaire FI (2009) Do changes in rainfall patterns affect semiarid annual plant communities? J Veg Sci 20(2):269–276

    Article  Google Scholar 

  • Muller RN (1978) The phenology, growth and ecosystem dynamics of erythronium americanum in the northern hardwood forest. Ecol Monogr 48(1):1–20

    Article  Google Scholar 

  • Munkhtsetseg E, Kimura R, Wang J, Shinoda M (2007) Pasture yield response to precipitation and high temperature in Mongolia. J Arid Environ 70(1):94–110

    Article  Google Scholar 

  • Munson S, Benton T, Lauenroth W, Burke I (2010) Soil carbon flux following pulse precipitation events in the shortgrass steppe. Eco Res 25(1):205–211

    Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60(7):1927–1937

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4(1):25–51

    Article  Google Scholar 

  • Piao SL, Fang JY, He JS (2006) Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim Chang 74(1–3):253–267

    Article  Google Scholar 

  • Potts DL, Huxman TE, Enquist BJ, Weltzin JF, Williams DG (2006) Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. J Ecol 94(1):23–30

    Article  Google Scholar 

  • Robertson TR, Bell CW, Zak JC, Tissue DT (2009) Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytol 181(1):230–242

    Article  Google Scholar 

  • Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53(3):301–304

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central Grassland region of the United States. Ecology 69(1):40–45

    Article  Google Scholar 

  • Santiago LS, Schuur EAG, Schuur KS (2005) Nutrient cycling and plant-soil feedbacks across a precipitation gradient in lowland Panama. J Trop Ecol 21:46–470

    Google Scholar 

  • Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89(3):464–480

    Article  Google Scholar 

  • Shackleton CM (1999) Rainfall and topo-edaphic influences on woody community phenology in South African savannas. Glob Ecol Biogeogr 8(2):125–136

    Article  Google Scholar 

  • Sherry RA, Weng ES, Arnone JA, Johnson DW, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2008) Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob Chang Biol 14(12):2923–2936

    Article  Google Scholar 

  • Sims PL, Singh JS (1978) The structure and function of ten Western North American grasslands: III. Net primary production, turnover and efficiencies of energy capture and water use. J Ecol 66(2):573–597

    Article  Google Scholar 

  • Sneva F (1982) Relation of precipitation and temperature with yield of herbaceous plants in eastern Oregon. Int J Biometeorol 26:263–276

    Article  Google Scholar 

  • SPSS Inc. (2004) SPSS® 13.0 Base User’s Guide. Chicago, Illinois, USA

  • State Meteorological Administration, chief editor (1993) Agricultural Meteorology Meteorology Press, Beijing 136–138

  • Swemmer AM, Knapp AK, Snyman HA (2007) Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J Ecol 95(4):780–788

    Article  Google Scholar 

  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138(1–4):82–92

    Article  Google Scholar 

  • Thomson BD, Siddique KHM, Barr MD, Wilson JM (1997) Grain legume species in low rainfall Mediterranean-type environments.1. Phenology and seed yield. Field Crops Res 54(2–3):173–187

    Article  Google Scholar 

  • Wang HL, Gan YT, Wang RY, Niu JY, Zhao H, Yang QG, Li GC (2008) Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric For Meteorol 148(8–9):1242–1251

    Article  Google Scholar 

  • Wang GX, Li SN, Hu HC, Li YS (2009) Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation. Geoderma 149(3–4):280–289

    Google Scholar 

  • Wei YF, Guo K, Chen JQ (2008). Effect of precipitation pattern on recruitment of soil water in Kubuqi desert,northwestern China. J Plant Ecol 32(6):1346–1355 (in Chinese)

    Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53(10):941–952

    Article  Google Scholar 

  • Xu WX, Song G, Zhao XQ, Xiao JS, Tange YH, Fang JY, Zhang J, Jiang S (2011) High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinformation 13(4):528–535

    Article  Google Scholar 

  • Yahdjian L, Sala OE (2006) Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology 87(4):952–962

    Article  Google Scholar 

  • Yang YH, Fang JY, Ma WH, Wang W (2008) Relationship between variability in aboveground net primary production and precipitation in global grassland. Geophys Res Lett 35,L23710, doi:10.1029/2008GL035408

  • Yang YH, Fang JY, Pan YD, Ji CJ (2009) Aboveground biomass in Tibetan grasslands. J Arid Environ 73(1):91–95

    Article  Google Scholar 

  • Yang, YH, Fang, JY, Fay, PA, Bell, JE and Ji, CJ (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett 37

  • Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003) Plants reverse warming effect on ecosystem water balance. Proc Natl Acad Sci 100(17):9892–9893

    Article  Google Scholar 

  • Zhang F, Li H, Li Y, Li Y, Lin L (2009) Periodic fluctuation features of air temperature, precipitation, and aboveground net primary production of alpine meadow ecosystem on Qinghai-Tibetan Plateau. Chin J Ecol 20(3):525–530

    Google Scholar 

  • Zhao X (2009) Alpine meadow ecosystem and global change. Science Press, Beijing

    Google Scholar 

  • Zhong L, Ma Y, Salama M, Su Z (2010) Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim Chang 103(3):519–535

    Article  Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res-Atmos 106(D17):20069–20083

    Article  Google Scholar 

  • Zhou X, Talley M, Luo Y (2009) Biomass, litter, and soil respiration along a precipitation gradient in southern great plains, USA. Ecosystems 12(8):1369–1380

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the five anonymous reviewers for the insightful comments on the manuscript. This research was financially supported by China eleventh and twelfth 5-year plan science and technology support project (2007BAC30B00 and 2012BAH31B03), and sponsored by 2012 Shanghai Pujiang Program (12PJ1401400), Thousand Young Talents Program in China, and The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baocheng Zhang or Xuhui Zhou.

Additional information

Baocheng Zhang, Junji Cao, Yanfen Bai and Xuhui Zhou are contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Cao, J., Bai, Y. et al. Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow. Climatic Change 118, 197–212 (2013). https://doi.org/10.1007/s10584-012-0622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0622-2

Keywords

Navigation