Skip to main content

Advertisement

Log in

Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer D, Ganopolski A (2005) A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochemistry Geophysics Geosystems 6: Q05003, doi:10.1029/2004GC000891

  • Archer D, Martin P, Buffett B, Brovkin V, Rahmstorf S, Ganopolski A (2004) The importance of ocean temperature to global biochemistry. Earth Planet Sci Lett 222:333–348

    Article  Google Scholar 

  • Beerling DJ, Woodward FI (2001) Vegetation and the Terrestrial Carbon Cycle. Cambridge University Press, UK

  • Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35: 2362-2367

    Article  Google Scholar 

  • Berger A, Gallée H, Melice JL (1991) The Earth's future climate at the astronomical time scale. In Goodess, CM, Palutikov JP (eds), Future Climate Change and Radioactive Waste Disposal NIREX Safety Series NSS/R257, Climatic Research Unit, University of East Anglia, Norwich, UK, pp. 148–165

  • Berger A, Loutre MF (1996) Modelling the climate response to the astronomical and CO2 forcings. Comptes Rendus De L'academie Des Sciences De Paris t.323, serie IIa, 1–16

  • Berger A, Loutre MF, Gallée H (1996) Sensitivity of the LLN 2-D climate model to the astronomical and CO2 forcing (from 200 kyr BP to 130 kyr AP). Scientific Report, Institut d'Astronomie et de Géophysique G. Lemaitre, Université catholique de Louvain 1996/1, 1–49

  • Berger A, Loutre MF, Tricot C (1993) Insolation and earth's orbital periods. J Geophys Res 98(D6), 10341–10362

    Google Scholar 

  • Broecker WS (1998) The end of the present interglacial: how and when? Quaternary Science Reviews 17: 689–694

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles 16(4): 1139, doi: 10.1029 / 2001GB001662

  • Clark PU, Pollard D (1998) Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13(1): 1–9

    Article  Google Scholar 

  • Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869

    Article  Google Scholar 

  • Claussen et al. (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18(7):579–586

    Article  Google Scholar 

  • Cochelin A-S (2004) Simulation of glacial inceptions with the “green” McGill Paleoclimate Model. M.Sc. Thesis, McGill University. Available as C2GCR Report No. 2004-2, McGill University, Montreal, Quebec, Canada, H3A 2K6

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of the new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics 15:183–203

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere atmosphere transfer scheme (BATS) for the NCAR community climate model. Ncar tn387+str, NCAR Technical Note, National Center for Atmospheric Research, Boulder, Colorado, Climate and Global Dynamic Division

  • EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press. Cambridge, United Kingdom and New York, USA, 881pp

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398: 121–126

    Article  Google Scholar 

  • Kukla GJ, Matthews RK, Mitchell MJ (1972) Present interglacial: how and when will it end? Quat Res 2:261–269

    Article  Google Scholar 

  • Le Treut H, McAvaney B (2000) A model intercomparison of equilibrium climate change in response to CO2 doubling. Notes du Pole de Modelisation de l'IPSL, Institut Pierre Simon LaPlace, Paris, France No. 18

  • Letreguilly A, Huybrechts P, Reeh N (1991) Steady-state characteristics of the Greenland ice sheet under different climates. J Glaciol 37(125):149–157

    Google Scholar 

  • Loutre MF (2003) Clues from MIS 11 to predict the future climate–a modelling point of view. Earth Planet Sci Lett 212:213–224

    Article  Google Scholar 

  • Loutre MF, Berger A (2000) Future climatic changes: Are we entering an exceptionally long interglacial? Climatic Change 46:61–90

    Article  Google Scholar 

  • Manabe S, Spelman MJ, Bryan K (1991) Transient responses of a coupled ocean-atmosphere model to a gradual change of atmospheric CO2. Part I: Annual mean response. J Climate 4:785–818

    Google Scholar 

  • Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J Climate 7:5–23

    Article  Google Scholar 

  • Marshall SJ, Clarke GKC (1997) A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet, 1. Theory. J Geophys Res 102:20599–20613

    Article  Google Scholar 

  • Milankovitch. MM (1941) Canon of Insolation and the ice-age problem Koniglich Serbische Akad. Belgrade, Yugoslavia

  • Oerlemans J, Van der Veen CJ (1984) Ice sheets and climate Reidel Publishing. Dordrecht, 217pp

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Benders M, Chapellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev AV, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov I, Montoya M, Mysak LA, Sokolov A, Stone P, Wang Z, Weaver A (2005) EMIC intercomparison project (EMIP - CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient reponses to atmospheric CO2 doubling. Climate Dynamics 25:363–385, doi: 10.1007/s00382-005-0042-3

    Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change 43:353–367

    Article  Google Scholar 

  • Ruddiman WF (2001) Earth's Climate: Past and Future. W.H. Freeman and Company, New York

    Google Scholar 

  • Ruddiman WF (2003) Orbital insolation, ice volume and greenhouse gases. Quaternary Science Review 22:1597–1629

    Article  Google Scholar 

  • Saltzmann B, Maasch KA, Verbitsky MY (1993) Possible effects of anthropogenically-increased CO2 on the dynamics of climate: implications for ice age cycles. Geophys Res Lett 20:1051–1054

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1976) Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239, late pliocene to latest pleistocene. Mem Geol Soc Am 145:449–464

    Google Scholar 

  • Vettoretti G, Peltier WR (2004) Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quaternary Science Review 23(3-4):499–519

    Article  Google Scholar 

  • Wang Y, Mysak LA, Wang Z, Brovkin V (2005a) The greening of the McGill Paleoclimate Model. Part I: Improved land surface scheme with vegetation dynamics. Climate Dynamics 24:469–480, doi: 10.1007/s00382-004-0515-9

    Google Scholar 

  • Wang Y, Mysak LA, Wang Z, Brovkin V (2005b) The greening of the McGill paleoclimate model. Part II: simulation of holocene millennial-scale natural climate changes. Climate Dynamics 24:481–496, doi: 10.1007/s00382-004-0516-8

    Google Scholar 

  • Wang Y, Mysak LA, Roulet NT (2005c) Holocene climate and carbon cycle dynamics: Experiments with the “green” McGill paleoclimate model. Global Biogeochemical Cycles 19, GB3022, doi:10.1029/2005GB002484

  • Wang Z (2005) Two climatic states and feedbacks on thermohaline circulation in an Earth system model of intermediate complexity. Climate Dynamics 25:299–314, doi: 10.1007/s00382-05-0033-4

    Google Scholar 

  • Wang Z, Mysak LA (2000) A simple coupled atmosphere-ocean-sea ice-land surface model for climate and paleoclimate studies. J Climate 13:1150–1172

    Article  Google Scholar 

  • Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys Res Lett 29(23):2102, doi: 10.1029/2002GL015120

    Google Scholar 

  • Wang Z, Hu R-M, Mysak LA, Blanchet J-P, Feng J (2004) A parameterization of solar energy disposition in the climate system. Atmosphere-Ocean 42(2):113–125

    Article  Google Scholar 

  • Wang Z, Cochelin A-SB, Mysak LA, Wang Y (2005) Simulation of the last glacial inception with the green McGill paleoclimate model. Geophys Res Lett 32:L12705 doi: 10.1029/2005GL023047

    Google Scholar 

  • Wood RA, Vellinga M, Thorpe RB (2003) Global warming and thermohaline circulation stability. Phil. Trans R Soc London A361, 1961–1975

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A. Mysak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochelin, AS.B., Mysak, L.A. & Wang, Z. Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception. Climatic Change 79, 381–401 (2006). https://doi.org/10.1007/s10584-006-9099-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-006-9099-1

Keywords

Navigation