Skip to main content
Log in

Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

We aimed to study patterns of variation and factors influencing the evolutionary dynamics of a satellite DNA, pBuM, in all seven Drosophila species from the buzzatii cluster (repleta group). We analyzed 117 alpha pBuM-1 (monomer length 190 bp) and 119 composite alpha/beta (370 bp) pBuM-2 repeats and determined the chromosome location and long-range organization on DNA fibers of major sequence variants. Such combined methodologies in the study of satDNAs have been used in very few organisms. In most species, concerted evolution is linked to high copy number of pBuM repeats. Species presenting low-abundance and scattered distributed pBuM repeats did not undergo concerted evolution and maintained part of the ancestral inter-repeat variability. The alpha and alpha/beta repeats colocalized in heterochromatic regions and were distributed on multiple chromosomes, with notable differences between species. High-resolution FISH revealed array sizes of a few kilobases to over 0.7 Mb and mutual arrangements of alpha and alpha/beta repeats along the same DNA fibers, but with considerable changes in the amount of each variant across species. From sequence, chromosomal and phylogenetic data, we could infer that homogenization and amplification events involved both new and ancestral pBuM variants. Altogether, the data on the structure and organization of the pBuM satDNA give insights into genome evolution including mechanisms that contribute to concerted evolution and diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alkhimova OG, Mazurok NA, Potapova TA, Zakian SM, Heslop-Harrison JS, Vershinin AV (2004) Diverse patterns of the tandem repeat organization in rye chromosomes. Chromosoma 113: 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Bachmann L, Sperlich D (1993) Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis and D. obscura. Mol Biol Evol 10: 647–659.

    PubMed  CAS  Google Scholar 

  • Casals F, Cáceres M, Manfrin MH, González J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169: 2047–2059.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D (2005) Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res 33: 4519–4526.

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci 31: 662–669.

    Article  PubMed  CAS  Google Scholar 

  • de Brito RA, Manfrin MH, Sene FM (2002) Mitochondrial DNA phylogeography of Brazilian populations of Drosophila buzzatii. Genet Mol Biol 25: 161–171.

    Article  Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Feliciello I, Picariello O, Chinali G (2006) Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene 383: 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro MP, Fontdevila A (2007) Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii. Mol Genet Genomics 277: 83–95.

    Article  CAS  Google Scholar 

  • Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170: 1913–1927.

    Article  PubMed  CAS  Google Scholar 

  • Heiskanen M, Peltonen L, Palotif A (1996). Visual mapping by high resolution FISH. Trends Genet 12(10): 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11: 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G et al. (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn GCS, Sene FM (2005) Evolutionary turnover of two pBuM satellite DNA subfamilies in the Drosophila buzzatii cluster (repleta group): from alpha to alpha/beta arrays. Gene 349: 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn GCS, Bollgönn S, Sperlich D, Bachmann L (1999) Characterization of a species-specific satellite DNA of Drosophila buzzatii. J Zool Syst Evol Res 37: 109–112.

    Article  Google Scholar 

  • Kuhn GCS, Franco FF, Manfrin MH, Moreira-Filho O, Sene FM (2007) Low rates of homogenization of the DBC-150 satellite DNA family restricted to a single pair of microchromosomes in species from the Drosophila buzzatii cluster. Chromosome Res 15: 457–469.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software, Arizona State University, Tempe, Arizona, USA

    Google Scholar 

  • Luchetti A, Cesari M, Carrara G et al. (2003) Unisexuality and molecular drive: Bag320 sequence diversity in Bacillus taxa (Insecta Phasmatodea). J Mol Evol 56: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Macas J, Navratilova A, Koblizkova A (2006) Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 115: 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Manfrin MH, Sene FM (2006) Cactophilic Drosophila in South America: a model for evolutionary studies. Genetica 126: 1–19.

    Article  Google Scholar 

  • Mateus RP, Sene FM (2006) Population genetic study of allozyme variation in natural populations of Drosophila antonietae (Insecta, Diptera). J Zool Syst Evol Res 45: 136–143.

    Article  Google Scholar 

  • Mravinac B, Plohl M (2007) Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens. Gene 394: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, Jamilena M et al. (2005) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60: 391–399.

    Article  PubMed  Google Scholar 

  • Opperman R, Emmanuel E, Levy AA (2004) The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 168: 2207–2215.

    Article  PubMed  CAS  Google Scholar 

  • Pons J, Juan C, Petitpierre E (2002) Higher-order organization and compartimentalization of satellite DNA PIM357 in species of the coleopteran genus Pimelia. Chromosome Res 10(7): 597–606.

    Article  CAS  Google Scholar 

  • Rubnitz J, Subramani S (1984) The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 4: 2253–2258.

    PubMed  CAS  Google Scholar 

  • Rudd MK, Wray GA, Willard HF (2006) The evolutionary dynamics of alpha-satellite. Genome Res 16: 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical In Situ Hybridization. Oxford: BIOS Scientific Publishers Limited, Oxford.

    Google Scholar 

  • Shiels C, Coutelle C, Huxley C (1997) Contiguous arrays of satellites 1,3, and β form a 1.5-Mb domain on chromosome 22p. Genomics 44: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Stephan W, Cho S (1994) Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136: 333–341.

    PubMed  CAS  Google Scholar 

  • Strachan T, Webb D, Dover G (1985) Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4: 1701–1708.

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO J 6: 1035–1039.

    Article  CAS  Google Scholar 

  • Ugarkovic D, Plohl M (2002) Variation in satellite DNA profiles – causes and effects. EMBO J 21: 5955–5959.

    Article  PubMed  CAS  Google Scholar 

  • Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115: 553–567.

    PubMed  CAS  Google Scholar 

  • Zimmer EA, Martin SL, Beverly SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158–2162.

    Article  PubMed  CAS  Google Scholar 

  • Zinic SD, Ugarkovic D, Cornudella L, Plohl M (2000) A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin. Chromosome Res 8(3): 201–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo C. S. Kuhn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Map of part of South America showing the geographical distribution of the buzzatii cluster with the approximate geographical localities of the Drosophila strains studied in the present work. (1) Morro do Chapéu, Cachoeira do Ferro Doido, Cafarnaum (BA), (2) Ibotirama (BA), (3) Milagres (BA), (4) Grão Mogol (MG), (5) Sertãozinho (SP), (6) Serrana (SP), (7) Arraial do Cabo (RJ), (8) Arroio Teixeira (RS), (9) Tramandai (RS), (10) San Juan, (11) Famatina, (12) Catamarca, (13) Ticucho and (14) Tapia. (PPT 920KB)

Supplementary Figure S2

Nucleotide alignment containing alpha pBuM-1 sequences from D. serido (DsdoA2), D. antonietae (DantA2), D. koepferae (DkoeA2), D. borborema (DborA2) and D. buzzatii (DbuzA1 and DbuzA2). The nucleotide sequences of direct neighbor repeats (dimers) are named as a and b after the repeat notations. The method used for the isolation of the sequences is shown within parentheses (PA2 = primers A2F/R). The region corresponding to the annealing of primers A1F, A2F (green) and A1F, A2R (red) is indicated (yellow represents overlap of primers). The location of restriction sites responsible for the isolation of high-copy number alpha repeats is indicated. Asterisks represent deletions. See Table 1 for accession numbers. (DOC 73.5KB)

Supplementary Figure S3

Nucleotide alignment containing alpha/beta pBuM-2 sequences from D. gouveai (DgouAB), D. seriema (DsmaAB), D. antonietae (DantAB), D. serido (DsdoAB), D. koepferae (DkoeAB), D. borborema (DborAB) and D. buzzatii (DbuzAB). The beta sequence is underlined. The method used for the isolation of the sequences is shown (PA2 = primers A2F/R and PB1 = primers PB1F/R). The region corresponding to the annealing of primers A2F, B1F (green) and A2R, B1R (red) is indicated (yellow represents overlap of primers). The location of restriction sites responsible for the isolation of high-copy-number alpha/beta repeats is also indicated. Some of the alpha/beta repeats showing large rearrangements were not included. Asterisks represent deletions. See Table 1 for accession numbers. (DOC 128KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, G.C.S., Sene, F.M., Moreira-Filho, O. et al. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res 16, 307–324 (2008). https://doi.org/10.1007/s10577-007-1195-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1195-1

Key words

Navigation