Skip to main content
Log in

Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Concepts of spider karyotype evolution are based mostly on advanced and most diversified clade, the entelegyne lineage of araneomorph spiders. Hence the typical spider karyotype is supposed to consist exclusively of acrocentric chromosomes including the multiple X chromosomes. However, our data show considerable diversity of chromosome morphology and sex chromosome systems in basal clades of araneomorphs. Karyotypes of basal araneomorphs consist of holocentric (superfamily Dysderoidea) or normal chromosomes with localized centromere. In males of basal araneomorphs the prophase of first meiotic division includes a long diffuse stage. Multiple X chromosomes are less common in basal clades. The sex chromosome system of many families includes a Y chromosome or nucleolus organizer region that occurs rarely in the entelegyne spiders. A derived X1X2Y system with an achiasmatic sex-chromosome pairing during meiosis was found in the families Drymusidae, Hypochilidae, Filistatidae, Sicariidae, and Pholcidae. This suggests a monophyletic origin of the families. In some lineages the X1X2Y system converted into an X0 system, as found in some pholcids, or into an XY system, which is typical for the family Diguetidae. The remarkable karyotype and sex chromosome system diversity allows us to distinguish four evolutionary lineages of basal araneomorphs and hypothesize about the ancestral karyotype of araneomorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araújo D, Cella DM, Brescovit AD (2005a) Cytogenetic analysis of the neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): standard staining, NORs, C-bands and base-specific fluorochromes. Braz J Biol 65: 193–202.

    PubMed  Google Scholar 

  • Araújo D, Brescovit AD, Rheims CA, Cella DM (2005b) Chromosomal data of two pholcids (Araneae, Pholcidae): a new diploid number and the first cytogenetical record for the New World clade. J Arachnol 33: 591–596.

    Article  Google Scholar 

  • Araújo D, Cella DM, Brescovit AD (2005c) Variabilidade cromossômica em três espécies de Scytodes Latreille, 1804 (Araneae, Haplogynae, Scytodidae). In Pérez-Miles F, Costa F, Viera C, Simó M, eds., Actas del primer Congreso Latinoamericano de Aracnología y V. Encuentro de Aracnólogos del Cono Sur 2005. Uruguay: Minas, p. 7.

    Google Scholar 

  • Artoni RF, Bertollo LAC (2002) Evolutionary aspects of the ZZ/WW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Heredity 89: 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Benavente R, Wettstein R (1980) Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma 77: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Bole-Gowda BN (1950) The chromosome study in the spermatogenesis of two lynx-spiders (Oxyopidae). Proc Zool Soc Bengal 3: 95–107.

    Google Scholar 

  • Brum-Zorrilla N, Postiglioni A (1981) Karyological studies on Uruguayan spiders. II. Sex chromosomes in spiders of the genus Lycosa (Araneae: Lycosidae). Genetica 56: 47–53.

    Article  Google Scholar 

  • Church K (1979) The grasshoper X chromosome. II. Negative heteropycnosis, transcription activities and compartmentation during spermatogonial stages. Chromosoma 71: 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Coddington JA (2005) Phylogeny and classification of spiders. In Ubick D, Paquin P, Cushing PE, Roth V, eds., Spiders of North America: an Identification Manual. American Arachnological Society, pp. 18–24.

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22: 565–592.

    Article  Google Scholar 

  • Díaz MO, Sáez FA (1966) Karyotypes of South American Araneida. Mem Inst Butantan 33: 153–154.

    Google Scholar 

  • Eskov KY (1989) Spider paleontology: present trends and future expectations. Acta Zool Fennica 190: 123–127.

    Google Scholar 

  • Eskov KY, Zohnstein SL (1989) A new classification for the order Araneida (Arachnida: Chelicerata). Acta Zool Fennica 190: 129–137.

    Google Scholar 

  • Feiertag-Koppen CCM (1980) Cytological studies of the two-spotted spider mite Tetranychus urticae Koch (Trombidiformes, Tetranychidae). II. Meiosis in growing oocytes. Genetica 54: 173–180.

    Article  Google Scholar 

  • Forster RR, Platnick NI, Gray MR (1987) A review of the spider superfamilies Hypochiloidea and Austrochiloidea (Araneae, Araneomorphae). Bull Am Mus Nat Hist 185: 1–116.

    Google Scholar 

  • Galián J, Hogan JE, Vogler AP (2002) The origin of multiple sex chromosomes in tiger beetles. Mol Biol Evol 19: 1792–1796.

    PubMed  Google Scholar 

  • Gray MR (1995) Morphology and relationships within the spider family Filistatidae (Araneae: Araneomorphae). Rec West Aust Mus Suppl 52: 79–89.

    Google Scholar 

  • Hackman W (1948) Chromosomenstudien an Araneen mit besonderer Berücksichtigung der Geschlechtschromosomen. Acta Zool Fennica 54: 1–101.

    Google Scholar 

  • Hetzler S (1979) Some studies of spider chromosomes. Am Arachnol 20: 20.

    Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014.

    Article  PubMed  CAS  Google Scholar 

  • Klášterská I (1977) The concept of the prophase of meiosis. Hereditas 86: 205–210.

    Article  Google Scholar 

  • Král J (1994a) Holokinetic (holocentric) chromosomes. Biologické listy 59: 191–217. [In Czech, with English summary]

    Google Scholar 

  • Král J (1994b) The karyotype analysis of central European spiders of two superfamilies, Amaurobioidea and Dictynoidea (Araneida). PhD thesis, Charles University, Prague. [In Czech, with English summary]

  • Král J, Řezáč M, Št’áhlavský F, Musilová J, Coyle FA, Ribera Almerje C (2004) Evolution of the karyotype and sex chromosome systems in basal araneomorph spiders. In Maelfait JP, Baert L, Alderweireldt M et al. eds., Proceedings, 16th Congress of Arachnology. Gent: Gent University, p. 90.

    Google Scholar 

  • Lehtinen PT (1967) Classification of the cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Ann Zool Fennici 4: 199–467.

    Google Scholar 

  • Levan AK, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

    Article  Google Scholar 

  • Macgregor HC (1993) An Introduction to Animal Cytogenetics. London: Chapman & Hall.

    Google Scholar 

  • Maddison WP (1982) XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae). Chromosoma 85: 23–27.

    Article  Google Scholar 

  • Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) ‘Holo’er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12: 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17: 1886–1893.

    Article  PubMed  CAS  Google Scholar 

  • Oliver JH (1977) Cytogenetics of mites and ticks. Annu Rev Ent 22: 407–429.

    Article  Google Scholar 

  • Painter TS (1914) Spermatogenesis in spiders. Zool Jahrb 38: 509–576.

    Google Scholar 

  • Parida BB, Sharma NN (1987) Chromosome number, sex mechanism and genome size in 27 species of Indian spiders. Chromos Inf Serv 43: 11–13.

    Google Scholar 

  • Platnick NI (2006) The world spider catalog, version 6.5. American Museum of Natural History. Retrieved from http://research.amnh.org/entomology/spiders/catalog/index.html.

  • Platnick NI, Coddington JA, Forster RR, Griswold CE (1991) Spinneret morphology and phylogeny of haplogyne spiders. Am Mus Novitates 3016: 1–73.

    Google Scholar 

  • Rodríguez Gil SG, Mola LM, Papeschi AG, Scioscia CL (2002) Cytogenetic heterogeneity in common haplogyne spiders from Argentina. J Arachnol 30: 47–56.

    Article  Google Scholar 

  • Rowell DM (1985) Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma 93: 169–176.

    Article  Google Scholar 

  • Rowell DM (1990) Fixed heterozygosity in Delena cancerides Walck. (Araneae: Sparassidae): an alternative to speciation by monobrachial fusion. Genetica 80: 139–157.

    Article  CAS  Google Scholar 

  • Řezáč M, Král J, Musilová J, Pekár S (2006) Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae). Hereditas (in press).

  • Shanahan CM (1989) Cytogenetics of Australian scorpions I. Interchange polymorphism in the family Buthidae. Genome 32: 882–889.

    Google Scholar 

  • Silva D (1988) Estudio cariotípico de Loxosceles laeta (Araneae: Loxoscelidae). Rev per Ent 31: 9–12.

    Google Scholar 

  • Silva RW, Klisiowicz DDR, Cella DM, Mangili OC, Sbalqueiro IJ (2002) Differential distribution of constitutive heterochromatin in two species of brown spider: Loxosceles intermedia and L. laeta (Araneae, Sicariidae), from the metropolitan region of Curitiba, PR (Brasil). Acta Biol Par (Curitiba) 31: 123–136.

    Google Scholar 

  • Stack SM, Anderson LK (2001) A model for chromosome structure during the mitotic and meiotic cell cycles. Chromosome Res 9: 175–198.

    Article  PubMed  CAS  Google Scholar 

  • Št’áhlávský F, Král J, Harvey MS, Haddad CR (2006) A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones). Eur J Entomol 103: 277–289.

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S (1954) Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J Sci Hiroshima Univ B 15: 23–136.

    Google Scholar 

  • Sybenga G (1981) Specialisation in the behaviour of chromosomes on the meiotic spindle. Genetica 57: 143–151.

    Article  Google Scholar 

  • Traut W (1976) Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma 58: 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Song D, Wang X, Yang Z (1993) Preliminary studies on the chromosome of four species of spiders. Acta Arachnol Sinica 2: 110–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Král.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Král, J., Musilová, J., Št’áhlavský, F. et al. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Res 14, 859–880 (2006). https://doi.org/10.1007/s10577-006-1095-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1095-9

Key words

Navigation