Skip to main content
Log in

Experimental investigation of gasless detonation in metal-sulfur compositions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Samples of zinc-sulfur and manganese-sulfur mixtures are shocked using an explosive pentolite charge to investigate if a shock-initiated reaction is able to support continued shock wave propagation. Samples of two different nominal densities (62 and 86% of theoretical maximum density) are prepared as weakly confined cylinders 50 mm in diameter and are instrumented along their length (⩽280 mm) with sensitive piezoelectric pins. Experimental results showed that the shock wave transmitted into the sample by the explosive rapidly decays to an acoustic wave in all four sample types. Furthermore, in denser samples, the part of the sample farthest from the explosive is recovered intact and unreacted, which clearly indicates that the wave is unable to trigger reactions after 100 mm of travel along the sample. Thus, it is concluded that insufficient reaction energy is transmitted forward to the shock wave to prevent its decay as it travels along the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. B. Boslough, “A thermochemical model for shock-induced reactions (heat detonations) in solids,” J. Chem. Phys., 92, No. 3, 1839–1848 (1990).

    Article  ADS  Google Scholar 

  2. L. S. Bennett and Y. Horie, “Shock-induced inorganic reactions and condensed phase detonations,” Shock Waves, 4, 127–136 (1994).

    Article  MATH  ADS  Google Scholar 

  3. W. Fickett and W. C. Davis, Detonation: Theory and Experiment, University of California Press (1979).

  4. A. G. Merzhanov, Yu. A. Gordopolov, and V. S. Trofimov, “On the possibility of gasless detonation in condensed systems,” Shock Waves, 4, 157–159 (1996).

    Article  ADS  Google Scholar 

  5. N. N. Thadhani, “Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures,” J. Appl. Phys., 76, No. 4, 2129–2138 (1994).

    Article  ADS  Google Scholar 

  6. J. Jiang, S. Goroshin, and J. H. S. Lee, “Shock wave induced chemical reaction in Mn + S mixture,” in: Proc. of the APS Shock Compression of Condensed Matter (1997), pp. 655–658.

  7. J. H. S. Lee, S. Goroshin, A. Yoshinaka, M. Romano, J. Jiang, I. Hooton, and F. Zhang, “Attempts to initiate detonations in metal-sulphur mixtures,” in: Proc. of the APS Shock Compression of Condensed Matter (1999), pp. 775–778.

  8. D. L. Gurév, Yu. A. Gordopolov, and S. S. Batsanov, “Solid-state synthesis of ZnTe in shock waves,” Combust., Expl., Shock Waves, 42, No. 1, 116–124 (2006).

    Article  Google Scholar 

  9. S. S. Batsanov and Yu. A. Gordopolov, “Solid-state detonation velocity limits,” Combust., Expl., Shock Waves, 43, No. 5, 587–589 (2007).

    Article  Google Scholar 

  10. L. G. Bolkhovitinov and S. S. Batsanov, “Theory of solid-state detonation,” Combust., Expl., Shock Waves, 43, No. 2, 219–221 (2007).

    Article  Google Scholar 

  11. D. L. Gur’ev, Yu. A. Gordopolov, S. S. Batsanov, A. G. Merzhanov, and V. E. Fortov, “Solid-state detonation in the zinc-sulfur system,” Appl. Phys. Lett., 88, 024102-1–024102-3 (2006).

    ADS  Google Scholar 

  12. S. S. Batsanov, “An additive method for calculation of the sound velocity in porous materials,” Inorg. Mater., 43, No. 10, 1070–1072 (2007).

    Article  Google Scholar 

  13. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskii, and V. E. Fortov, “Detonation in an aluminum-Teflon mixture,” JETP Lett., 81, No. 7, 311–314 (2005).

    Article  ADS  Google Scholar 

  14. W. Mock (Jr.) and W. H. Holt, “Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders,” in: Proc. of the APS Shock Compression of Condensed Matter (2005), pp. 1097–1100.

  15. F. X. Jetté, S. Goroshin, and A. J. Higgins, “Shock reactivity of non-porous mixtures of manganese and sulfur,” in: Proc. of the APS Shock Compression of Condensed Matter (2007), pp. 1033–1036.

  16. G. Asch, Les Capteurs en Instrumentation Industrielle, Dunod (1982).

  17. M. L. Oelze, W. D. O’Brien (Jr.), and R. G. Darmody, “Measurement of attenuation and speed of sound in soils,” Soil Sci. Soc. Am. J., 66, 788–796 (2002).

    Article  Google Scholar 

  18. S. S. Batsanov, Effects of Explosions on Materials, Springer-Verlag (1994).

  19. F. X. Jetté, S. Goroshin, and A. J. Higgins, “Timeresolved temperature measurements of shock initiation in a manganese-sulfur mixture,” in: Proc. of the APS Shock Compression of Condensed Matter (2007), pp. 1037–1040.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Higgins.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 2, pp. 116–123, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jetté, F.X., Goroshin, S., Higgins, A.J. et al. Experimental investigation of gasless detonation in metal-sulfur compositions. Combust Explos Shock Waves 45, 211–217 (2009). https://doi.org/10.1007/s10573-009-0028-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0028-2

Key words

Navigation