Skip to main content

Advertisement

Log in

Neuroprotective Changes of Striatal Degeneration-Related Gene Expression by Acupuncture in an MPTP Mouse Model of Parkinsonism: Microarray Analysis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aicardi J (1994) The place of neuronal migration abnormalities in child neurology. Can J Neurol Sci 21:185–193

    CAS  PubMed  Google Scholar 

  • Airaksinen MS, Meyer M (1996) Most classes of dorsal root ganglion neurons are severely depleted but not absent in mice lacking neurotrophin-3. Neuroscience 73:907–911

    Article  CAS  PubMed  Google Scholar 

  • An JH, Lee SY, Jeon JY, Cho KG, Kim SU, Lee MA (2009) Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res 8:2873–2881

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Dovero S, Bioulac B, Gross C (1997) Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 148:288–292

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Müller ML, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL, Frey KA (2010) Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133:1747–1754

    Article  PubMed  Google Scholar 

  • Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C, Ichim G, Delcros JG, Raquin MA, Rousseau R, Combaret V, Bénard J, Tauszig-Delamasure S, Mehlen P (2010) Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 120:850–858

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Breuss M, Salzer MC, Flint J, Cowan NJ, Keays DA (2010) Tuba8 is expressed at low levels in the developing mouse and human brain. Am J Hum Genet 86:819–822

    Article  PubMed  Google Scholar 

  • Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523

    Article  CAS  PubMed  Google Scholar 

  • Cepeda C, Walsh JP, Peacock W, Buchwald NA, Levine MS (1993) Dye-coupling in human neocortical tissue resected from children with intractable epilepsy. Cereb Cortex 3:95–107

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Riley DJ, Chen PL, Lee WH (1997) HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 17:6049–6056

    CAS  PubMed  Google Scholar 

  • Chen HH, Tourtellotte WG, Frank E (2002) Muscle spindle-derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons. J Neurosci 22:3512–3519

    CAS  PubMed  Google Scholar 

  • Choi YG, Lim S (2010) Nε-(carboxymethyl)lysine linkage to α-synuclein and involvement of advanced glycation end products in α-synuclein deposits in an MPTP-intoxicated mouse model. Biochimie 92:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Choi YG, Park JH, Lim S (2009) Acupuncture inhibits ferric iron deposition and ferritin-heavy chain reduction in an MPTP-induced Parkinsonism model. Neurosci Lett 450:92–96

    Article  CAS  PubMed  Google Scholar 

  • Cina C, Bechberger JF, Ozog MA, Naus CC (2007) Expression of connexins in embryonic mouse neocortical development. J Comp Neurol 504:298–313

    Article  CAS  PubMed  Google Scholar 

  • Dai YS, Xu J, Molkentin JD (2005) The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 25:9936–9948

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Rodríguez E, Sotillo R, Schvartzman JM, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 105:16719–16724

    Article  PubMed  Google Scholar 

  • Emborg ME (2007) Nonhuman primate models of Parkinson’s disease. ILAR J 48:339–355

    CAS  PubMed  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D, Moens L, Dewilde S (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410:146–151

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    Article  CAS  PubMed  Google Scholar 

  • Genç B, Ozdinler PH, Mendoza AE, Erzurumlu RS (2004) A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol 2:e403

    Article  PubMed  Google Scholar 

  • Guerrini R, Filippi T (2005) Neuronal migration disorders, genetics, and epileptogenesis. J Child Neurol 20:287–299

    Article  PubMed  Google Scholar 

  • Guo Y, Martinez-Williams C, Rannels DE (2003) Gap junction-microtubule associations in rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1213–L1221

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hong MS, Park HK, Yang JS, Park HJ, Kim ST, Kim SN, Park JY, Song JY, Park HK, Jo DJ, Park SW, HwanYun D, Ban JY, Chung JH (2010) Gene expression profile of acupuncture treatment in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease model. Neurol Res 32:74–78

    Article  PubMed  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) α-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    Article  CAS  PubMed  Google Scholar 

  • Hwang SH, Choi YG, Jeong MY, Hong YM, Lee JH, Lim S (2009) Microarray analysis of gene expression profile by treatment of Cinnamomi ramulus in lipopolysaccharide-stimulated BV-2 cells. Gene 443:83–90

    Article  CAS  PubMed  Google Scholar 

  • Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res 1131:211–219

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Mao XO, Banwait S, Jin K, Greenberg DA (2007a) Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci USA 104:19114–19119

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Sun Y, Jin K, Mao XO, Chen S, Ellerby LM, Greenberg DA (2007b) A neuroglobin-overexpressing transgenic mouse. Gene 398:172–176

    Article  CAS  PubMed  Google Scholar 

  • Li TY, Colley D, Barr KJ, Yee SP, Kidder GM (2007) Rescue of oogenesis in Cx37-null mutant mice by oocyte-specific replacement with Cx43. J Cell Sci 120:4117–4125

    Article  CAS  PubMed  Google Scholar 

  • Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against beta-amyloid-induced cell injury. Neurobiol Aging 29:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Lin HQ, Choi R, Chan KL, Ip D, Tsim KW, Wan DC (2010) Differential gene expression profiling on the muscle of acetylcholinesterase knockout mice: a preliminary analysis. Chem-Biol Interact 187:120–123

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Youdim MB (2003) Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci 24:184–191

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G, Youdim MB (2005) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375

    Article  CAS  PubMed  Google Scholar 

  • Maness LM, Kastin AJ, Weber JT, Banks WA, Beckman BS, Zadina JE (1994) The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev 18:143–159

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Federoff HJ (2005) Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems. Neuroscientist 11:539–549

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Callahan LM, Casaceli C, Chen L, Kiser GL, Chui B, Kaysser-Kranich TM, Sendera TJ, Palaniappan C, Federoff HJ (2004) Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra. J Neurosci 24:7445–7454

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ, Palaniappan C, Federoff HJ (2006) Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson’s disease. Neurobiol Dis 21:305–313

    Article  CAS  PubMed  Google Scholar 

  • Miwa T, Watanabe A, Mitsumoto Y, Furukawa M, Fukushima N, Moriizumi T (2004) Olfactory impairment and Parkinson’s disease-like symptoms observed in the common marmoset following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Acta Otolaryngol Suppl 553:80–84

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Goulet M, Grondin R, Blanchet P, Bédard PJ, Di Paolo T, Lévesque D (1998) Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 10:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Moses D, Drago J, Teper Y, Gantois I, Finkelstein DI, Horne MK (2008) Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo. Neuroscience 154:606–620

    Article  CAS  PubMed  Google Scholar 

  • Neesen J, Hartwich T, Brandhorst G, Aumüller G, Gläser B, Burfeind P, Mendoza-Lujambio I (2002) Tep22, a novel testicular expressed gene, is involved in the biogenesis of the acrosome and the midpiece of the sperm tail. Biochem Biophys Res Commun 297:737–748

    Article  CAS  PubMed  Google Scholar 

  • Otto D, Unsicker K (1994) FGF-2 in the MPTP model of Parkinson’s disease: effects on astroglial cells. Glia 11:47–56

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2005) Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx 2:129–138

    Article  PubMed  Google Scholar 

  • Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH (2003) Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol 180:93–98

    Article  PubMed  Google Scholar 

  • Pattarini R, Rong Y, Qu C, Morgan JI (2008) Distinct mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine resistance revealed by transcriptome mapping in mouse striatum. Neuroscience 155:1174–1194

    Article  CAS  PubMed  Google Scholar 

  • Peinado A, Yuste R, Katz LC (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114

    Article  CAS  PubMed  Google Scholar 

  • Pettingill LN, Minter RL, Shepherd RK (2008) Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 152:821–828

    Article  CAS  PubMed  Google Scholar 

  • Pilkinton M, Sandoval R, Song J, Ness SA, Colamonici OR (2007) Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem 282:168–175

    Article  CAS  PubMed  Google Scholar 

  • Pirkevi C, Lesage S, Brice A, Başak AN (2009) From genes to proteins in mendelian Parkinson’s disease: an overview. Anat Rec (Hoboken) 292:1893–1901

    CAS  Google Scholar 

  • Reynard LN, Cocquet J, Burgoyne PS (2009) The multi-copy mouse gene Sycp3-like Y-linked (Sly) encodes an abundant spermatid protein that interacts with a histone acetyltransferase and an acrosomal protein. Biol Reprod 81:250–257

    Article  CAS  PubMed  Google Scholar 

  • Rufer M, Wirth SB, Hofer A, Dermietzel R, Pastor A, Kettenmann H, Unsicker K (1996) Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated Parkinsonian mice. J Neurosci Res 46:606–617

    Article  CAS  PubMed  Google Scholar 

  • Russo MA, Giustizieri ML, Favale A, Fantini MC, Campagnolo L, Konda D, Germano F, Farini D, Manna C, Siracusa G (1999) Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol Reprod 61:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16:127–139

    Article  CAS  PubMed  Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Simon AM, Goodenough DA (1998) Diverse functions of vertebrate gap junctions. Trends Cell Biol 8:477–483

    Article  CAS  PubMed  Google Scholar 

  • Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251:206–220

    Article  CAS  PubMed  Google Scholar 

  • Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  PubMed  Google Scholar 

  • Stanchi F, Corso V, Scannapieco P, Ievolella C, Negrisolo E, Tiso N, Lanfranchi G, Valle G (2000) TUBA8: a new tissue-specific isoform of alpha-tubulin that is highly conserved in human and mouse. Biochem Biophys Res Commun 270:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jin K, Mao XO, Xie L, Peel A, Childs JT, Logvinova A, Wang X, Greenberg DA (2005) Effect of aging on neuroglobin expression in rodent brain. Neurobiol Aging 26:275–278

    Article  CAS  PubMed  Google Scholar 

  • Tessier CR, Doyle GA, Clark BA, Pitot HC, Ross J (2004) Mammary tumor induction in transgenic mice expressing an RNA-binding protein. Cancer Res 64:209–214

    Article  CAS  PubMed  Google Scholar 

  • Watson ED, Mattar P, Schuurmans C, Cross JC (2009) Neural stem cell self-renewal requires the Mrj co-chaperone. Dev Dyn 238:2564–2574

    Article  CAS  PubMed  Google Scholar 

  • Weinlich S, Hüttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH (2009) IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3′UTR. RNA 15:1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Westerlund M, Hoffer B, Olson L (2010) Parkinson’s disease: exit toxins, enter genetics. Prog Neurobiol 90:146–156

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360

    Article  CAS  PubMed  Google Scholar 

  • Wirth SB, Rufer M, Unsicker K (1996) Early effects of FGF-2 on glial cells in the MPTP-lesioned striatum. Exp Neurol 137:191–200

    Article  CAS  PubMed  Google Scholar 

  • Yano H, Torkin R, Martin LA, Chao MV, Teng KK (2009) Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing. J Neurosci 29:14790–14802

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Shykind BM, Lane RP, Tonnes-Priddy L, Ross JA, Walker M, Williams EM, Trask BJ (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4:R71

    Article  PubMed  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR (2004) E2Fs link the control of G1/S and G2/M transcription. EMBO J 23:4615–4626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researcher Program through an NRF grant funded by the MEST, Republic of Korea (No. 2010-0000385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Lim.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YG., Yeo, S., Hong, YM. et al. Neuroprotective Changes of Striatal Degeneration-Related Gene Expression by Acupuncture in an MPTP Mouse Model of Parkinsonism: Microarray Analysis. Cell Mol Neurobiol 31, 377–391 (2011). https://doi.org/10.1007/s10571-010-9629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9629-2

Keywords

Navigation