Skip to main content

Advertisement

Log in

Comparative Proteomics Analysis of Cerebrospinal Fluid of Patients with Guillain–Barré Syndrome

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To better understand the pathophysiologic mechanisms underlying Guillain–Barré syndrome (GBS), Comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with GBS (the experiment group) and control subjects suffering from other neurological disorders (the control group) was carried out using two-dimensional gel electrophoresis (2-DE) technique, in combination with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and database searching to determine abnormal CSF proteins in GBS patients. Image analysis of 2-DE gels silver stained revealed that 10 protein spots showed significant differential expression between the two groups of CSF samples. The expression of cystatin C, transthyretin, apolipoprotein E and heat shock protein 70 were decreased. However, haptoglobin, α-1-antitrypsin, apolipoprotein A-IV and neurofilaments were elevated. The subsequent ELISA measured the concentration of cystatin C and confirmed the result of the proteomic analysis. These identified proteins may be involved in the pathophysiological process of GBS and call for further studying the role of these proteins in the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asbury AK, Cornblath DR (1990) Assessment of current diagnostic criteria for Guillain–Barre-syndrome. Ann Neurol 27:S21–S24

    Article  PubMed  Google Scholar 

  • Avila EM, Holdsworth G, Sasaki N, Jackson RL, Harmony JA (1982) Apoprotein E suppresses phytohemagglutininactivated phospholipid turnover in peripheral blood mononuclear cells. J Biol Chem 257(10):5900–5909

    PubMed  CAS  Google Scholar 

  • Berkova N, Gilbert C, Goupil S, Yan J, Korobko V, Naccache PH (1999) TNF-induced haptoglobin release from human neutrophils: pivotal role of the TNF p55 receptor. J Immunol 162(10):6226–6232

    PubMed  CAS  Google Scholar 

  • Gaillard O, Gervais A, Meillet D, Plassart E, Fontaine B, Lyon-Caen O, Delattre J, Schuller E (1998) Apolipoprotein E and multiple sclerosis: a biochemical and genetic investigation. J Neurol Sci 158(2):180–186

    Article  PubMed  CAS  Google Scholar 

  • Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221(4615):1082–1084

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser DF, Patchornik A, Merril CR (1998) Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem 173:412–423

    Article  Google Scholar 

  • Hu YY, He SS, Wang XC, Duan QH, Khatoon S, Iqbal K, Grundke-Iqbal I, Wang JZ (2002) Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett 320(3):156–160

    Article  PubMed  CAS  Google Scholar 

  • Hughes RA, Cornblath DR (2005) Guillain–Barre syndrome. Lancet 366(9497):1653–1666

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Hu L-S Chang M, Wu J, Winblad B, Zhu J (2007) Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur J Neurol 14(5):563–568

    Article  PubMed  CAS  Google Scholar 

  • Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42(10):1589–1600

    PubMed  CAS  Google Scholar 

  • Langlois MR, Delanghe JR, Philippé J, Ouyang J, Bernard D, De Buyzere M, Van Nooten G, Leroux-Roels G (1997) Distribution of lymphocyte subsets in bone marrow and peripheral blood is associated with haptoglobin type. Binding of haptoglobin to the B-cell lectin CD22. Eur J Clin Chem Clin Biochem 35(3):199–205

    PubMed  CAS  Google Scholar 

  • Langner CA, Birkenmeier EH, Roth KA, Bronson RT, Gordon JI (1991) Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem 266(18):11955–11964

    PubMed  CAS  Google Scholar 

  • Laurat E, Poirier B, Tupin E, Caligiuri G, Hansson GK, Bariéty J, Nicoletti A (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104(2):197–202

    PubMed  CAS  Google Scholar 

  • Lehmensiek V, Süssmuth SD, Brettschneider J, Tauscher G, Felk S, Gillardon F, Tumani H (2007) Proteome analysis of cerebrospinal fluid in Guillain–Barré syndrome (GBS). J Neuroimmunol 185(1–2):190–194

    Article  PubMed  CAS  Google Scholar 

  • Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47(6):642–653

    Article  PubMed  CAS  Google Scholar 

  • Mannes AJ, Martin BM, Yang HY, Keller JM, Lewin S, Gaiser RR, Iadarola MJ (2003) Cystatin C as a cerebrospinal fluid biomarker for pain in humans. Pain 102(3):251–256

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH Jr, Bowser R (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95(5):1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310(2):173–186

    Article  PubMed  CAS  Google Scholar 

  • Ropper AH (1992) The Guillain–Barre′ syndrome. N Engl J Med 326(17):1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67(5):2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JC, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M, Wilkins MR, Hochstrasser DF (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18(3–4):324–327

    Article  PubMed  CAS  Google Scholar 

  • Serot JM, Christmann D, Dubost T, Couturier M (1997) Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatr 63(4):506–508

    PubMed  CAS  Google Scholar 

  • Shen P, Howlett GJ (1993) Alteration in rat apolipoprotein CIII gene expression and lipoprotein composition during inflammation. Inflammation 17(2):153–166

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Silveira JR, Calliari A, Kun A, Benech JC, Sanguinetti C, Chalar C, Sotelo JR (2000) Neurofilament mRNAs are present and translated in the normal and severed sciatic nerve. J Neurosci Res 62(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Tu GF, De Jong F, Apostolopoulos J, Nagashima M, Fidge N, Schreiber G, Howlett G (1987) Effect of acute inflammation on rat apolipoprotein mRNA levels. Inflammation 11(2):241–251

    Article  PubMed  CAS  Google Scholar 

  • Volchkova EV, Pak SG, Malov VA, Umbetova KT (2000) Changes in the levels of acute phase proteins in viral hepatitis. Ter Arkh 72(11):18–21

    PubMed  CAS  Google Scholar 

  • Wagner L, Gessl A, Parzer SB, Base W, Waldhäusl W, Pasternack MS (1996) Haptoglobin phenotyping by newly developed monoclonal antibodies. Demonstration of haptoglobin uptake into peripheral blood neutrophils and monocytes. J Immunol 156(5):1989–1996

    PubMed  CAS  Google Scholar 

  • Yasmin MY, Aziz B, Nazim M, Madhavan RK (1993) Prealbumin rather than albumin is a more sensitive indicator of acute liver disease. Malays J Pathol 15(2):147–150

    PubMed  CAS  Google Scholar 

  • Yu S, Duan RS, Chen Z, Quezada HC, Bao L, Nennesmo I, Zhu SW, Winblad B, Ljunggren HG, Zhu J (2004) Increased susceptibility to experimental autoimmune neuritis after upregulation of the autoreactive T cell response to peripheral myelin antigen in apolipoprotein E-deficient mice. J Neuropathol Exp Neurol 63(2):120–128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Affiliated Qilu Hospital of Shandong University, Jinan, for collecting CSF samples and Central Laboratory, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, for the excellent technical assistance and Dr. Fujun-Liu for helpful discussions on the mass spectrometry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Lian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YR., Liu, SL., Qin, ZY. et al. Comparative Proteomics Analysis of Cerebrospinal Fluid of Patients with Guillain–Barré Syndrome. Cell Mol Neurobiol 28, 737–744 (2008). https://doi.org/10.1007/s10571-007-9257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9257-7

Keywords

Navigation