Skip to main content

Advertisement

Log in

Resin impregnation of cellulose nanofibril films facilitated by water swelling

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677

    Article  CAS  Google Scholar 

  • ASTM (2010a) Annual Book of ASTM Standards, ASTM D638–10: standard test method for tensile properties of plastics. ASTM International, West Conshohockon

    Google Scholar 

  • ASTM (2010b) Annual Book of ASTM Standards, ASTM D3985–05e1: standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International, West Conshohockon

    Google Scholar 

  • Aulin C, Ahola S, Joseffson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nnaoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25(13):7675–7685

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  • Conley RT, Bieron JF (1963) A study of the oxidative degradation of phenol-formaldehyde polycondensates using infrared spectroscopy. J Appl Polym Sci 7(1):103–117

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  PubMed  Google Scholar 

  • Gong G, Pyo J, Mathew AP, Oksman K (2011) Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos Part A 42(9):1275–1282

    Article  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2814–2817

    Article  Google Scholar 

  • Heriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9(6):1579–1585

    Article  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  PubMed  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylacitic acid. Compos Sci Technol 68(9):2103–2106

    Article  CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16(2):227–238

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296

    Article  CAS  Google Scholar 

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1–2):67–75

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on micro fibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598

    Article  CAS  Google Scholar 

  • Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182

    Article  PubMed  PubMed Central  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11–12):1958–1961

    Article  CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588

    Article  CAS  PubMed  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose Ι nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499

    Article  Google Scholar 

  • Pizzi A, Eaton NJ (1987) A conformational analysis approach to phenol-formaldehyde resins adhesion to wood cellulose. J Adhes Sci Technol 1(1):191–200

    Article  CAS  Google Scholar 

  • Procter HR (1914) The equilibrium of dilute hydrochloric acid and gelatin. J Chem Soc 105:313–327

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Wu Y, Cai Z (2012) High-performance cellulose nanofibril composite films. Bio Res 7(3):3064–3075

    Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen G, Fukuzumi H, Isogai A (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19(3):705–711

    Article  CAS  Google Scholar 

  • Sabo R, Seo JH, Ma Z (2012) Cellulose nanofiber composite substrates for flexible electronics, 2012 TAPPI International Conference on Nanotechnology for Renewable Materials. Montreal, Quebec

    Google Scholar 

  • Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromecules 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Sasso C, Zeno E, Petit-Conil M, Chaussy D, Belgacem MN, Tapin-Lingua S, Beneventi D (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295(10):934–941

    Article  CAS  Google Scholar 

  • Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4(2):1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8(9):2976–2978

    Article  CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposites materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563

    Article  CAS  PubMed  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionancomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464

    Article  Google Scholar 

  • Zhu J, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13(5):1339–1344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Enormous gratitude is offered to Rick Reiner for preparing and supplying TEMPO-oxidized cellulose nanofibrils. The authors would like to acknowledge Benjamin Treml for help with tensile testing. Tom Kuster and Jane O’Dell are kindly acknowledged for SEM and DMTA tests, respectively. The authors would also like to thank Joseph Jakes and Jane O’Dell for performing AFM scans. This work was partly supported by the national “948” project of China (2009-4-51).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Cai or Yiqiang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qing, Y., Sabo, R., Cai, Z. et al. Resin impregnation of cellulose nanofibril films facilitated by water swelling. Cellulose 20, 303–313 (2013). https://doi.org/10.1007/s10570-012-9815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9815-0

Keywords

Navigation