Skip to main content
Log in

On the determination of crystallinity and cellulose content in plant fibres

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose Iβ followed by integration of the crystalline and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland–Vonk methods. The determined cellulose crystallinities were 90–100 g/100 g cellulose in plant-based fibres and 60–70 g/100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

High pressure liquid chromatography

DM:

Dry matter

References

  • Alexander L.E. (1969). X-ray diffraction methods in polymer science. Wiley-Interscience, New York

    Google Scholar 

  • Andersson S., Serimaa R., Paakkari T., Saranpää P. and Pesonen E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537

    Google Scholar 

  • Bardage S., Donaldson L., Tokoh C. and Daniel G. 2004. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp Paper Res. J. 19(4):448–452

    Article  CAS  Google Scholar 

  • Browning B.L. (1967). Methods of wood chemistry. Interscience Publishers, A division of John Wiley & Sons, New York

    Google Scholar 

  • Buschle-Diller G. and Zeronian S.H. (1992). Enhancing the reactivity and strength of cotton fibres. J. Appl. Polym. Sci. 45(6):967–979

    Article  CAS  Google Scholar 

  • Debye P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. 46:809–823

    Article  CAS  Google Scholar 

  • De Souza I.J., Bouchard J., Methot M., Berry R. and Argyropoulos D.S. (2002). Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. J. Pulp Paper Sci. 28(5):167–170

    CAS  Google Scholar 

  • Felby C., Klinke H.B., Olsen H.S. and Thomsen A.B. (2003). Ethanol from wheat straw cellulose by wet oxidation pretreatment and simultaneous saccharification and fermentation. ACS Symposium Series 855:157–174

    Article  CAS  Google Scholar 

  • Fink H.P. and Walenta E. (1994). Röntgenbeugungsuntersuchungen zur übermolekularen Struktur von Cellulose im Verarbeitungsprozeß. Papier 48(12):739–748

    CAS  Google Scholar 

  • Finkenstadt V.L. and Millane R.P. (1998). Crystal structure of Valonia cellulose Iβ. Macromolecules 31(22):7776–7783

    Article  CAS  Google Scholar 

  • Goering H.K. and Van Soest P.J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications). Agricultural Research Service, USDA Washington DC

    Google Scholar 

  • Hepworth D.G., Bruce D.M., Vincent J.F.V. and Jeronimidis G. (2000). The manufacture and mechanical testing of thermosetting natural fibre composites. J. Mater. Sci. 35(2):293–298

    Article  CAS  Google Scholar 

  • Howard C.J. and Hill R.J. 1986. LHMP: a computer program for Rietveld analysis of fixed wavelength X-ray and neutron powder diffraction patterns. AAEC (now ANSTO) Report M112. Lucas Heights Research Laboratory

  • Kaar W.E., Cool L.G., Merriman M.M. and Brink D.L. (1991). The complete analysis of wood polysaccharides using HPLC. J. Wood Chem. Technol. 11(4):447–463

    Article  CAS  Google Scholar 

  • Klinke H.B., Lilholt H., Toftegaard H., Andersen T.L., Schmidt A.S. and Thomsen A.B. 2001. Wood and plant fibre reinforced polypropylene composites. In 1st world conference on biomass for energy and industry. James & James (Science Publishers), pp. 1082–1085

  • Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. (1997). Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proceedings of the National Academy of Sciences of the United States of America 94(17):9091–9095

    Article  PubMed  CAS  Google Scholar 

  • Liitia T., Maunu S.L., Hortling B., Tamminen T., Pekkala O., Varhimo A. (2003). Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316

    Article  Google Scholar 

  • Madsen B. and Lilholt H. (2003). Physical and mechanical properties of unidirectional plant fibre composites - an evaluation of the influence of porosity. Compos. Sci. Technol. 63(9):1265–1272

    Article  CAS  Google Scholar 

  • Mwaikambo L.Y. and Ansell M.P. (1999). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angewandte Makromolekulare Chemie 272:108–116

    Article  CAS  Google Scholar 

  • Nishiyama Y., Langan P. and Chanzy H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. American Chem. Society 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Rietveld H.M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152

    Article  CAS  Google Scholar 

  • Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71

    Article  CAS  Google Scholar 

  • Ruland W. (1961). X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14:1180–1185

    Article  CAS  Google Scholar 

  • Sao K.P., Samantaray B.K. and Bhattacherjee S. (1994). X-ray study of crystallinity and disorder in ramie fiber. J. Appl. Polym. Sci. 52:1687–1694

    Article  CAS  Google Scholar 

  • Sao K.P., Samantaray B.K. and Bhattacherjee S. (1997). Analysis of lattice distortions in ramie cellulose. J. Appl. Polym. Sci. 66:2045–2046

    Article  CAS  Google Scholar 

  • Sarko A. and Muggli R. (1974). Packing analysis of carbohydrates and polysaccharides. 3. Valonia cellulose and cellulose-II. Macromolecules 7(4):486–494

    Article  CAS  Google Scholar 

  • Segal L., Creely J.J., Martin A.E. and Conrad C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29:786–794

    CAS  Google Scholar 

  • Simon I., Glasser L., Scheraga H.A. and Manley R.S. (1988). Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21(4):990–998

    Article  CAS  Google Scholar 

  • Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occuring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Teeri T.T. and Koivula A. (1995). Cellulose degradation by native and engineered fungal cellulases. Carbohydr. Europe. 12:28–33

    Google Scholar 

  • Thomsen A.B., Rasmussen S.K., Bohn V., Nielsen K.V. and Thygesen A. 2005. Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. Risø National Laboratory. Report No.: R-1507

  • Thygesen A., Thomsen A.B., Schmidt A.S., Jørgensen H., Ahring B.K. and Olsson L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb. Technol. 32(5):606–615

    Article  CAS  Google Scholar 

  • Thygesen A., Thomsen M.H., Jørgensen H., Christensen B.H. and Thomsen A.B. 2004. Hydrothermal treatment of wheat straw on pilot plant scale, 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–15th May 2004

  • Varga E., Reczey K. and Zacchi G. (2004). Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotechnol., 113–16:509–523

    Article  PubMed  Google Scholar 

  • Vonk C.G. (1973). Computerization of Rulands X-ray method for determination of crystallinity in polymers. J. Appl. Crystallogr. 6:148–152

    Article  CAS  Google Scholar 

  • Woodcock C. and Sarko A. (1980). Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal-structure of native ramie cellulose. Macromolecules 13(5):1183–1187

    Article  CAS  Google Scholar 

  • Young R.A. (ed.) 1993. The Rietveld Method. Oxford University Press

Download references

Acknowledgements

This work was part of the project ‘High performance hemp fibres and improved fibre networks for composites’ supported by the Danish Research Agency of the Ministry of Science and of the project EFP Bioethanol part 2 J. nr. 1383/03–0002. Dr. Claus Felby is acknowledged as supervisor for Ph. D. student Anders Thygesen. Mr. Tomas Fernqvist and Mrs. Ingelis Larsen are acknowledged for technical assistance and Dr. Bo Madsen, Dr. Enikö Varga and Dr. Mette Hedegaard Thomsen are acknowledged for discussion and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Thygesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thygesen, A., Oddershede, J., Lilholt, H. et al. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12, 563–576 (2005). https://doi.org/10.1007/s10570-005-9001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9001-8

Keywords

Navigation