Skip to main content
Log in

Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bills, B.G.: Non-chaotic obliquity variations of Mars. The 37th Annual Lunar and Planetary Science Conference, pp. 13–17, March 2006, League City, TX (2006)

  • Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astron. J. 64: 378–397

    Article  ADS  MathSciNet  Google Scholar 

  • Brouwer, D., van Woerkom, A.J.J.: The secular variations of the orbital elements of the principal planets. Astronomical papers prepared for the use of the American Ephemeris and Nautical Almanac, vol. 13, Part 2, pp. 81–107. US Government Printing Office, Washington, DC (1950)

  • Brumberg V.A., Evdokimova L.S. and Kochina N.G. (1971). Analytical methods for the orbits of artificial satellites of the moon. Celestial Mech. 3: 197–221

    Article  MATH  ADS  Google Scholar 

  • Burns J. (1972). Dynamical characteristics of phobos and deimos. Rev. Geophys. Space Phys. 6: 463–483

    ADS  Google Scholar 

  • Burns J. (1978). The dynamical evolution and origin of the Martian moons. Vistas Astron. 22: 193–210

    Article  ADS  Google Scholar 

  • Colombo G. (1966). Cassini’s second and third laws. Astron. J. 71: 891–896

    Article  ADS  Google Scholar 

  • Cook G.E. (1962). Luni-solar perturbations of the orbit of an earth satellite. Geophys. J. 6(3): 271–291

    MATH  ADS  Google Scholar 

  • Efroimsky M. and Goldreich P. (2004). Gauge freedom in the N-body problem of celestial mechanics. Astron. Astrophys. 415: 1187–1199, astro-ph/0307130

    Article  ADS  MATH  Google Scholar 

  • Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet. 1. The case of uniform precession. astro-ph/0408168 (2004) [This preprint is a very extended version of Efroimsky (2005)]

  • Efroimsky M. (2005). Long-term evolution of orbits about a precessing oblate planet: 1. The case of uniform precession. Celestial Mech. Dynam. Astron. 91: 75–108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Efroimsky M. (2006). Long-term evolution of orbits about a precessing oblate planet: 2. The case of variable precession. Celestial Mech. Dynam. Astron. 96: 259–288

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet: 2. The case of variable precession. astro-ph/0607522 (2006b) [This preprint is a very extended version of Efroimsky (2006a)]

  • Efroimsky M. (2006). Gauge freedom in orbital mechanics. Ann. N. Y. Academy Sci. 1065: 346–374, astro-ph/0603092

    Article  ADS  Google Scholar 

  • Efroimsky, M., Lainey, V.: The physics of bodily tides in terrestrial planets, and the appropriate scales of dynamical evolution. J. Geophys. Res.—Planets (2007, in press)

  • Everhart, E.: An efficient integrator that uses Gauss-Radau spacings. Dynamics of comets: their origin and evolution. In: Carusi, A., Valsecchi, G.B. (eds.) Proceedings of IAU Colloquium 83 held in Rome on 11–15 June 1984. vol. 115, p. 185. Astrophysics and Space Science Library, Dordrecht, Reidel (1985)

  • Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Goldreich P. (1965). Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70: 5–9

    Article  ADS  Google Scholar 

  • Gurfil P., Kasdin N.J., Arrell R.J., Seager S. and Nissanke S. (2002). Infrared space observatories: How to mitigate zodiacal dust interference. Astrophys. J. 567: 1250–1261

    Article  ADS  Google Scholar 

  • Gurfil P. and Kasdin N.J. (2002a). Characterization and design of out-of-ecliptic trajectories using deterministic crowding genetic algorithms. Comput. Methods Appl. Mech. Eng. 191: 2169–2186

    Article  MATH  Google Scholar 

  • Gurfil P. and Kasdin N.J. (2002b). Niching genetic algorithms-based characterization of geocentric orbits in the 3D elliptic restricted three-body problem. Comput. Methods Appl. Mech. Eng. 191: 5673–5696

    Google Scholar 

  • Hartmann W.K. (2007). Martian cratering 9: toward resolution of the controversy about small craters. Icarus 189: 274–278

    Article  ADS  Google Scholar 

  • Innanen K.A., Zheng J.Q., Mikkola S. and Valtonen M.J. (1997). The Kozai Mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113: 1915–1919

    Article  ADS  Google Scholar 

  • Kilgore T.R., Burns J.A. and Pollack J.B. (1978). Orbital evolution of “Phobos” following its “capture”. Bull. Am. Astron. Soc. 10: 593

    ADS  Google Scholar 

  • Kozai Y. (1959). On the effects of the Sun and the Moon upon the motion of a close Earth satellite. SAO Special Report 22: 7–10

    ADS  Google Scholar 

  • Kozai Y. (1960). Effect of precession and nutation on the orbital elements of a close earth satellite. Astron. J. 65: 621–623

    Article  ADS  MathSciNet  Google Scholar 

  • Lainey V., Duriez L. and Vienne A. (2004). New accurate ephemerides for the Galilean satellites of Jupiter. I. Numerical integration of elaborated equations of motion. Astron. Astrophys. 420: 1171–1183

    Article  ADS  Google Scholar 

  • Lainey, V., Gurfil, P., Efroimsky, M.: Long-term evolution of orbits about a precessing oblate planet: 4. A comprehensive model (2008 in preparation)

  • Laskar J. (1988). Secular evolution of the solar system over 10 million years. Astron. Astrophys. 198: 341–362

    ADS  Google Scholar 

  • Laskar J. and Robutel J. (1993). The chaotic obliquity of the planets. Nature 361: 608–612

    Article  ADS  Google Scholar 

  • Murison, M.: Satellite Capture and the Restricted Three-Body Problem. Ph.D. Thesis, University of Wisconsin, Madison (1988)

  • Nesvorný D. and Vokrouhlický D. (2007). Analytic theory of the YORP effect for near-spherical objects. Astron. J. 134: 1750–1768

    ADS  Google Scholar 

  • Paige, D.A., Golombek, M.P., Maki, J.N., Parker, T.J., Crumpler, L.S., Grant, J.A., Williams, J.P.: MER small-crater statistics: evidence against recent quasi-periodic climate variations. Seventh Int. Conference Mars, 9–13 July 2007, Caltech, Pasadena, CA (2007)

  • Pang K.D., Pollack J.B., Veverka J., Lane A.L. and Ajello J.M. (1978). The composition of phobos: evidence for carbonateous chondrite surface from spectral analysis. Science 199: 64

    Article  ADS  Google Scholar 

  • Pollack J.B., Burns J.A. and Tauber M.E. (1979). Gas drag in primordial circumplanetary envelopes. a mechanism for satellite capture. Icarus 37: 587

    Article  ADS  Google Scholar 

  • Proskurin V.F. and Batrakov Y.V. (1960). Perturbations of the motion of artificial satellites, caused by the earth oblateness. Bull. Inst. Theor. Astro. 7: 537–548

    Google Scholar 

  • Smith D.E., Lemoine F.G. and Zuber M.T. (1995). Simultaneous estimation of the masses of mars, phobos, and deimos using spacecraft distant encounters. Geophys. Res. Lett. 22: 2171–2174

    Article  ADS  Google Scholar 

  • Szebehely V. (1967). Theory of Orbits. Academic Press, NY

    Google Scholar 

  • Tolson, R.H., 15, collaborators.: Viking first encounter of phobos. Preliminary results. Science 199, 61 (1978)

    Google Scholar 

  • Touma J. and Wisdom J. (1993). The chaotic obliquity of Mars. Science 259: 1294–1297

    Article  ADS  Google Scholar 

  • Touma J. and Wisdom J. (1994). Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107: 1189–1202

    Article  ADS  Google Scholar 

  • Veverka J. (1977). Phobos and deimos. Sci. Am. 236: 30

    Article  ADS  Google Scholar 

  • Ward W. (1973). Large-scale variations in the obliquity of Mars. Science 181: 260–262

    Article  ADS  Google Scholar 

  • Ward W. (1974). Climatic variations of Mars. Astronomical theory of insolation. J. Geophys. Res. 79: 3375–3386

    Article  ADS  Google Scholar 

  • Ward W. (1979). Present obliquity oscillations of Mars—Fourth-order accuracy in orbital e and i. J. Geophys. Res. 84: 237–241

    ADS  Google Scholar 

  • Ward W. (1982). Comments on the long-term stability of the earth’s obliquity. Icarus 50: 444–448

    Article  ADS  Google Scholar 

  • Zhang K., Hamilton, D.P.: Dynamics of inner neptunian satellites. Abstracts of the 37th DPS Meeting of the Americal Astronomical Society. In: AAS Bulletin,37, 667–668 (2005)

  • Waz P. (2004). Analytical theory of the motion of phobos: a comparison with numerical integration. Astron. Astrophys. 416: 1187–1192

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Efroimsky.

Additional information

We use the term “precession” in its general meaning, which includes any change of the instantaneous spin axis. So generally defined precession embraces the entire spectrum of spin-axis variations—from the polar wander and nutations through the Chandler wobble through the equinoctial precession.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurfil, P., Lainey, V. & Efroimsky, M. Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach. Celestial Mech Dyn Astr 99, 261–292 (2007). https://doi.org/10.1007/s10569-007-9099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9099-0

Keywords

Navigation