Skip to main content
Log in

Precise measurement of the solar gravitational red shift

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present the concept and the status of a multi-year project based on a new method to measure the Gravitational Red Shift of the Solar Spectrum with high precision. This project is aimed to conduct experimental verifications of the effect that the Einstein theory of General Relativity predicts for the frequencies of the Fraunhofer lines, that is, the light spectrum emitted by the Sun in its strong gravitational field. Previous determinations of such effect is limited to a precision of 2%. In order to discriminate between classical and relativistic explanations, we need to be sensitive to one part per million of the predicted effect. We have developed a new powerful technique, the Magneto-Optical Filter, that is able to provide far better precision and, for the future, possible space instrumentations able to extend our test to the second-order effect of the relativistic equivalence principle, never done before. The present paper is intended to describe the instrumentation, the procedure and the first encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beckers J.M. (1977). Material motions in sunspot umbrae. Ap. J. 213:900–905

    Article  ADS  Google Scholar 

  • Bray R.J., Loughhead R.E., Durrant C.J. (1984). The solar granulation, 2nd edn. CUP, Cambridge

    Google Scholar 

  • Cacciani, A., Rosati, P., Ricci, D., Egidi, A., Apporchaux, T., Marquedant, R., Smith, E.: Theoretical and experimental study of the Magneto-Optical Filter. JPL Document # D11900, Pasadena California

  • Cacciani A., Moretti P.F. (1993). Magneto-optical filter (MOF): concept and applications in astronomy. SPIE 2198:219–228

    ADS  Google Scholar 

  • Cacciani A., Dolci M., Moretti P.F., D’Alessio F., Giuliani C., Micolucci E., Di Cianno A. (2001). Search for global oscillations on Jupiter with a double cell Sodium Magneto-Optical Filter. A&A 372: 317–325

    Article  ADS  Google Scholar 

  • Dravins D. (1982). Photospheric Spectrum line asymmetries and wavelength shifts. ARA&A 20:61–89

    ADS  Google Scholar 

  • Finsterle W., Jefferies S.M., Cacciani A., Rapex P., Giebink C., Knox A., and DiMartino V. (2004a). Seismology of the solar atmosphere Solar Phys. 220:317–331

    Article  ADS  Google Scholar 

  • Finsterle W., Jefferies S.M., Cacciani A., Rapex P., McIntosh S.W. (2004b). Helioseismic mapping of the magnetic canopy in the solar chromosphere ApJ. Lett. 613:L185

    Article  ADS  Google Scholar 

  • Fujii Y. (1991). Theoretical background of the fifth force. Int. J. Modern Phys. A6 20:3505–3557

    Article  ADS  Google Scholar 

  • Kopeikin S.M., Ozernoy L.M. (1999). Post-Newtonian theory for precision doppler measurements of binary star orbits. ApJ 523:771–785

    Article  ADS  Google Scholar 

  • Krisher T.P., Morabito D., Anderson J.D. (1993). The Galileo solar redshift experiment. Phys. Rev. Lett. 70:2213–2216

    Article  ADS  Google Scholar 

  • Lindegren L., Dravins D. (2003). The Fundamenta Definition of “radial velocity”. A&A 401:1185–1201

    Article  ADS  Google Scholar 

  • LoPresto J.C., Shrader C., Pierce A.K. (1991). Solar gravitational red shift from the infrared oxigen triplet. ApJ 367:757–760

    Article  ADS  Google Scholar 

  • Ohanian, HC.: Special relativity:a modern introduction. Phys. Curric. & Instr. (Edition 2001)

  • Pound R.V., Rebka G.A. (1960). Apparent weigth of photons. Phys. Rev. Lett. 4:337

    Article  ADS  Google Scholar 

  • Roddier F. (1965). Etude a haute resolution de quelques raies de Fraunhoffer par observation de la response optique d’un jet atomique. I:Realization d’un spectrograph a jet atomique. Ann. Ap. 28:463

    ADS  Google Scholar 

  • Rhodes E., Cacciani A., Woodard M., Tomczyk S., Korzennik S., Ulrich R. (1988). On the constancy of intermediate-degree p-mod frequencies during the declining phase of solar cycle 21. ApJ 326:479–485

    Article  ADS  Google Scholar 

  • Rhodes E.J., Cacciani A., Korzennik S., Tomczyk S., Ulrich R. (1990). Depth and latitude dependence of the solar internal rotation. ApJ. 351:687–700

    Article  ADS  Google Scholar 

  • Snider J.L. (1972). New measurement of the solar gravitational red shift. Phys. Rev. Lett. 28:853

    Article  ADS  Google Scholar 

  • Vessot et al. (1980). Test of relativistic gravitationwith a space-born hydrogen maser. Phys. Rev. Lett. 45(26):2081

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cacciani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciani, A., Briguglio, R., Massa, F. et al. Precise measurement of the solar gravitational red shift. Celestial Mech Dyn Astr 95, 425–437 (2006). https://doi.org/10.1007/s10569-006-9014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-006-9014-0

Keywords

Navigation