Skip to main content
Log in

Assessment of DNA sensitivity in peripheral blood leukocytes after occupational exposure to microwave radiation: the alkaline comet assay and chromatid breakage assay

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

DNA sensitivity in peripheral blood leukocytes of radar-facility workers daily exposed to microwave radiation and an unexposed control subjects was investigated. The study was carried out on clinically healthy male workers employed on radar equipment and antenna system service within a microwave field of 10 μW/cm2–20 mW/cm2 with frequency range of 1,250–1,350 MHz. The control group consisted of subjects of similar age. The evaluation of DNA damage and sensitivity was performed using alkaline comet assay and chromatid breakage assay (bleomycin-sensitivity assay). The levels of DNA damage in exposed subjects determined by alkaline comet assay were increased compared to control group and showed inter-individual variations. After short exposure of cultured lymphocytes to bleomycin cells of subjects occupationally exposed to microwave (MW) radiation responded with high numbers of chromatid breaks. Almost three times higher number of bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes were determined in comparison with control group. The difference in break per cell (b/c) values recorded between smokers and non-smokers was statistically significant in the exposed group. Regression analyses showed significant positive correlation between the results obtained with two different methods. Considering the correlation coefficients, the number of metaphase with breaks was a better predictor of the comet assay parameters compared to b/c ratio. The best correlation was found between tail moment and number of chromatid with breaks. Our results indicate that MW radiation represents a potential DNA-damaging hazard using the alkaline comet assay and chromatid breakage assay as sensitive biomarkers of individual cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brusick D, Albertini R, McRee ED, Peterson D, Williams G, Hanawalt P, Preston J. Genotoxicity of radiofrequency radiation. Environ Mol Mutagen. 1998;32:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Cloos J, Nieuwenhuis EJC, Boomsma DI, Kuik DE, van der Sterre MLT, Arwert F, Snow GB, Braakhuis BJM. Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes. J Natl Cancer Inst. 1999a;91:1125–30.

    Article  PubMed  CAS  Google Scholar 

  • Cloos J, Reid CBA, van der Sterre MLT, Tobi H, Leemans CR, Snow GB, Braakhuis BJM. A comparison of bleomycin-induced damage in lymphocytes and primary oral fibroblasts and keratinocytes in 30 subjects. Mutagenesis. 1999b;14:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiotidis M, Raslova K, Vaughan N. Comet assay in human biomonitoring studies—reliability, validation, and applications. Environ Mol Mutagen. 1997;30:139–46.

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio G, Massa R, Scarfi MR, Zeni O. Cytogenetic studies in human blood lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics. 2002;23(1):7–13.

    Article  PubMed  Google Scholar 

  • Garaj-Vrhovac V. Biological effect of microwave radiation. In: Benulič T, Serša G, Kovač V, editors. Advances in radiology and oncology. Ljubljana, Slowenia; 1992. p. 356–61.

  • Garaj-Vrhovac V. Micronucleus assay and lymphocyte mitotic activity in risk assessment of occupational exposure to microwave radiation. Chemosphere. 1996;39(13):2301–12.

    Article  Google Scholar 

  • Garaj-Vrhovac V, Horvat D, Koren Z. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res. 1991;263:143–9.

    Article  PubMed  CAS  Google Scholar 

  • Garaj-Vrhovac V, Fučić A, Pevalek-Kozlina B. The rate of elimination of chromosomal aberrations after accidental exposure to microwave radiation. Bioelectrochem Bioenerg. 1993;30:319–25.

    Article  Google Scholar 

  • Garaj-Vrhovac V, Kopjar N, Ražem D, Vekić B, Miljanić S, Ranogajec-Komor M. Application of the alkaline comet assay in biodosimetry: assessment of in vivo DNA damage in human peripheral leukocytes after a γ radiation incident. Radiat Prot Dosim. 2002;98(4):407–16.

    CAS  Google Scholar 

  • Garson OM, McRobert TL, Campbell LJ, Hocking BA, Gordon I. A chromosomal study of workers with long-term exposure to radio-frequency radiation. Med J Aust. 1991;155:289–92.

    PubMed  CAS  Google Scholar 

  • Gichner T, Ptaček O, Stavreva DA, Wagner ED, Plewa MJ. A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. Mutat Res. 2000;470:1–9.

    PubMed  CAS  Google Scholar 

  • Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP. Bleoycin-induced strand-scission of DNA: mechanism of deoxyribose cleavage. J Biol Chem. 1981;256:8608–15.

    PubMed  CAS  Google Scholar 

  • Hagmar L, Bonassi S, Strömberg U, Brøgger A, Knudsen LE, Norppa H, Reuterwall C, ESCH. Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health. Cancer Res 1998;58:4117–21.

    PubMed  CAS  Google Scholar 

  • Hsu TC. Genetic instability in the human population: a working hypothesis. Hereditas. 1983;98:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Juutilainen J, Lang S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat Res. 1997;387:165–71.

    Article  PubMed  CAS  Google Scholar 

  • Kassie F, Parzefall W, Knasmüller S. Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res. 2000;463:13–31.

    Article  PubMed  CAS  Google Scholar 

  • Khaidakov M, Bishop ME, Manjanatha MG, Lyn-Cook LE, Desai VG, Chen JJ, Aidoo A. Influence of dietary antioxidants on the mutagenicity of 712-dimethylbenz(a)anthracene and bleomycin in female rats. Mutat Res. 2001;480/481:163–70.

    Google Scholar 

  • Lai H, Singh NP. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics. 1995;16:207–10.

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Singh NP. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiations. Int J Radiat Biol. 1996;69:513–21.

    Article  PubMed  CAS  Google Scholar 

  • Lai H, Carino M, Singh NP. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Biolectromagnetics. 1997;18:446–54.

    Article  CAS  Google Scholar 

  • Maes A, Verschaeve L, Arroyo A, De Wagter C, Vercruyssen L. In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagentics. 1993;14:495–501.

    Article  CAS  Google Scholar 

  • Maes A, Collier M, Vandonink S, Scarpa P, Verschaeve L. Cytogenetic effects of 50 Hz magnetic fields on human peripheral blood lymphocytes. Bioelectromagentics. 2000;21:589–96.

    Article  CAS  Google Scholar 

  • Malyapa RS, Ahem EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL. Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation. Radiat Res. 1997a;148(6):608–17.

    Article  PubMed  CAS  Google Scholar 

  • Malyapa RS, Ahem EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL. Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz). Radiat Res. 1997b;148(6):618–27.

    Article  PubMed  CAS  Google Scholar 

  • Malyapa RS, Ahem EW, Bi C, Straube WL, LaRegina M, Pickard WF, Roti Roti JL. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res. 1998;149(6):637–45.

    Article  PubMed  CAS  Google Scholar 

  • McNamee JP, Bellier PV, Gajda GB, Miller SM, Lemay EP, Lavallee BF, Marro L, Thansandote A. DNA damage and micronucleus induction in human leukocytes after acute in vitro exposure to a 1.9 GHz continuous-wave radiofrequency field. Radiat Res. 2002a;158:523–33.

    Article  PubMed  CAS  Google Scholar 

  • McNamee JP, Bellier PV, Gajda GB, Lavallee BF, Lemay EP, Marro L, Thansandote A. DNA damage in human leukocytes after acute in vitro exposure to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res. 2002b;158:534–7.

    Article  PubMed  CAS  Google Scholar 

  • Meltz ML. Radiofrequency exposure and mammalian cell toxicity, genotoxicity and transformation. Bioelectromagnetics. 2003;6:196–213.

    Article  Google Scholar 

  • Meltz ML, Eagan P, Erwin DN. Proflavin and microwave radiation: absence of a mutagenic interaction. Bioelectromagnetics. 1990;11:149–57.

    Article  PubMed  CAS  Google Scholar 

  • Michalska J, Motykiewicz G, Kalinowska E, Chorazy M. Bleomycin sensitivity test in the exposed and reference human populations. Mutat Res. 1998;418:43–8.

    PubMed  CAS  Google Scholar 

  • Møller P, Knudsen LE, Loft S, Wallin H. The comet assay as rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomark Prev. 2000;9:1005–15.

    Google Scholar 

  • Povirk LF. Bleomycin-induced mutagenesis in repackaged lambda phage: base substitution hotspots at the sequence C–G–C–C. Mutat Res. 1987;180:1–9.

    PubMed  CAS  Google Scholar 

  • Povirk LF, Goldberg IH. Base substitution mutations induced in the cI gene of lambda phage by neocarzinostatin chromophore at the sequence AGC. Nucleic Acids Res. 1986;14:1417–26.

    Article  PubMed  CAS  Google Scholar 

  • Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111(7):881–3.

    Article  PubMed  Google Scholar 

  • Savitz D, Calle E. Leukemia and occupational exposure to electromagnetic fields: review of epidemiologic surveys. J Occup Med. 1987;29:47–51.

    PubMed  CAS  Google Scholar 

  • Schaaper RM, Kunkel TA, Loeb LA. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc Natl Acad Sci. 1983;80:487–91.

    Article  PubMed  CAS  Google Scholar 

  • Singh NP. Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutat Res. 2000;455:111–27.

    PubMed  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  PubMed  CAS  Google Scholar 

  • Tucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res. 1996;365:147–59.

    PubMed  Google Scholar 

  • Verschaeve L. Genetic effects of radiofrequency radiation (RFR). Toxicol Appl Pharmacol. 2005;207:336–41.

    Article  PubMed  CAS  Google Scholar 

  • Verschaeve L, Maes A. Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res. 1998;410:141–64.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi BZ, Obe G. Controversial cytogenetic observations in mammalian somatic cells exposed to radio frequency radiation. Radiat Res. 2004;162:481–96.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi BZ, Leal BZ, Meltz ML, Pickard WF, Bisht KS, Roti Roti JL, Straube WL, Moros EG. Cytogenetics studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FMDA). Radiat Res. 2001;155(1):113–21.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi BZ, Sasser LB, Morris JE, Wilson BW, Anderson LE. Genotoxic potential of 1.6 GHz wireless communication signal: in vivo two-year bioassay. Radiat Res. 2003;159:558–64.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, Thompson LH. Molecular mechanisms of sister-chromatid exchange. Mutat Res. 2007;616:11–23.

    PubMed  CAS  Google Scholar 

  • Yost MG. Occupational health effects of nonionizing radiation. Occup Med. 1992;7:543–66.

    PubMed  CAS  Google Scholar 

  • Zotti-Martelli L, Peccatori M, Scarpato R, Migliore L. Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat Res. 2000;472:51–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank BSc. Snježani Ramić for excellent technical assistance. This investigation was supported in part by the Croatian Ministry of Science and Technology (grant No.0022-0222148-2125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Garaj-Vrhovac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garaj-Vrhovac, V., Oreščanin, V. Assessment of DNA sensitivity in peripheral blood leukocytes after occupational exposure to microwave radiation: the alkaline comet assay and chromatid breakage assay. Cell Biol Toxicol 25, 33–43 (2009). https://doi.org/10.1007/s10565-008-9060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9060-3

Keywords

Navigation