Skip to main content
Log in

Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Sumitomo Chemical has developed a low energy consuming and green process for the catalytic oxidation of HCl to Cl2, especially when compared with the electrolysis process. The RuO2/rutile-TiO2 catalyst has high catalytic activity and thermal stability due to ultra-fine RuO2 crystallites that cover the surface of the TiO2 primary particles with strong interaction. In addition, the silica modified RuO2/rutile-TiO2 catalyst shows higher thermal stability by preventing the RuO2 sintering due to using dispersed SiO2 particles. With these catalysts, high reaction rates required for industrial applications are achieved, even at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Motupally S, Mah DT, Freire FJ, Weidner JW (1998) Electrochem Soc Interface 7(3):32

    CAS  Google Scholar 

  2. Deacon H (1875) US patent 165,802

  3. Shell Oil Company (1965) US patent 3210158

  4. Kiyoura T, Yoshida K, Nishida H (1991) Shokubai 33:15

    CAS  Google Scholar 

  5. Mortensen M, Minet RG, Tsotsis TT, Benson SW (1999) Chem Eng Sci 54:2131

    Article  CAS  Google Scholar 

  6. Iwanaga K, Seki K, Hibi T, Issoh K, Suzuta T, Nakada M, Mori Y, Abe T (2004) Sumitomo Kagaku 2004-I:4

  7. Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate CJ, Andersen JN, Seitsonen AP, Over H (2008) Angew Chem Int Ed Engl 47:2131

    Article  CAS  Google Scholar 

  8. López N, Gómez-Segura J, Marín RP, Pérez-Ramírez J (2008) J Catal 255:29

    Article  Google Scholar 

  9. Shell International Research Maatschappij (1966) GB patent 1,046,313

  10. Sumitomo Chemical Company Limited (2005) US patent 6,852,667

  11. de Graaf J, van Dillen AJ, de Jong KP, Koningsberger DC (2001) J Catal 203:307

    Article  Google Scholar 

  12. Clausen BS, Topsøe H, Hansen LB, Stoltze P, Nørskov JK (1994) Catal Today 21:49

    Article  CAS  Google Scholar 

  13. Sumitomo Chemical Company Limited (2008) JP patent 4192354

  14. Sumitomo Chemical Company Limited (2005) US patent 6,977,066

  15. Sumitomo Chemical Company Limited (2008) JP patent 4182608

  16. Ozawa M, Kimura M (1990) J Mater Sci Lett 9(3):291

    Article  CAS  Google Scholar 

  17. Hayata T, Furuya T, Yamanaka S, Koezuka J (1989) Shokubai 31(2):116

    CAS  Google Scholar 

  18. Idemitsu Kosan (2002) JP patent 3365660

  19. Schmal M, Guimaraes AL, Dieguez LC (2001) In: 222nd ACS national meeting, Chicago, IL, US, August 26–30

  20. Sumitomo Chemical Company Limited (2008) JP patent 4069619

  21. Sumitomo Chemical Company Limited (2008) JP patent 2008155199

  22. Ruckenstein E, Pulvermacher B (1973) J Catal 29:224

    Article  CAS  Google Scholar 

  23. Flynn PC, Wanke SE (1974) J Catal 34:390

    Article  CAS  Google Scholar 

  24. Bartholomew CH (2001) Appl Catal A Gen 212:17

    Article  CAS  Google Scholar 

  25. Moorhouse J (2001) In: Modern chlor-alkali technology, vol 8. Royal Soc. Chem., Cambridge, p 49

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Seki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, K. Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process. Catal Surv Asia 14, 168–175 (2010). https://doi.org/10.1007/s10563-010-9091-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9091-7

Keywords

Navigation