Skip to main content

Advertisement

Log in

Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Sun is the Earth’s ultimate and inexhaustible energy source. One of the best routes to remedy the CO2 problem is to convert it to valuable hydrocarbons using solar energy. In this study, CO2 was photocatalytically reduced to produce methanol, methane and ethylene in a steady-state optical-fiber reactor under artificial light and real sunlight irradiation. The photocatalyst was dip-coated on the optical fibers that enable the light to transmit and spread uniformly inside the reactor. The optical-fiber photoreactor, comprised of nearly 120 photocatalyst-coated fibers, was designed and assembled. The XRD spectra indicated the anatase phase for all photocatalysts. It is found that the methanol yield increased with UV light intensity. A maximum methanol yield of 4.12 μmole/g-cat h is obtained when 1.0 wt% Ag/TiO2 photocatalyst was used under a light intensity of 10 W/cm2. When mixed oxide, TiO2–SiO2, is doped with Cu and Fe metals, the resulting photocatalysts show substantial difference in hydrocarbon production as well as product selectivity. Methane and ethylene were produced on Cu–Fe loaded TiO2–SiO2 photocatalyst. Since dye-sensitized Cu–Fe/P25 photocatalyst can fully harvest the light energy of 400–800 nm from sunlight, its photoactivity was significantly enhanced. Finally, CO2 photoreduction was studied by in situ IR spectroscopy and possible mechanism for the photoreaction was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Laws EA, Berning JL (1991) Bioresour Technol 37:25

    Article  CAS  Google Scholar 

  2. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Catal Today 45:221

    Article  CAS  Google Scholar 

  3. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396:21

    Article  Google Scholar 

  4. Pathak P, Meziani MJ, Li Y, Cureton LT, Sun YP (2004) Chem Commun 10:1234

    Article  Google Scholar 

  5. Tseng IH, Chang W-C, Wu JCS (2002) Appl Catal B: Environm 37:37

    Article  CAS  Google Scholar 

  6. Lo CC, Hung CH, Yuan CS, Wu JF (2007) Sol Energy Mater Sol Cells 91:1765

    Article  CAS  Google Scholar 

  7. Dey GR, Belapurkar AD, Kishore K (2004) J Photochem Photobiol A: Chem 163:503

    Article  CAS  Google Scholar 

  8. Guan GQ, Kida T, Harada T, Isayama M, Yoshida A (2003) Appl Catal A: Gen 249:11

    Article  CAS  Google Scholar 

  9. Guan GQ, Kida T, Yoshida A (2003) Appl Catal B: Environm 41:387

    Article  CAS  Google Scholar 

  10. Yahaya AH, Gondal MA, Hameed A (2004) Chem Phys Lett 400:206

    Article  CAS  Google Scholar 

  11. Chen H-C, Chou H-C, Wu JCS, Lin H-Y (2008) J Mater Res 23:1364

    Article  CAS  Google Scholar 

  12. Pan PW, Chen YW (2007) Catal Commun 8:1546

    Article  CAS  Google Scholar 

  13. Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Appl Catal B: Environm 71:291

    Article  CAS  Google Scholar 

  14. Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Top Catal 44:523

    Article  CAS  Google Scholar 

  15. Nguyen T-V, Wu JCS, Chiou C-H (2008) Catal Commun 9:2073

    Article  CAS  Google Scholar 

  16. Hirose T, Maeno Y, Himeda Y (2003) JMol Catal A-Chem 193:27

    Article  CAS  Google Scholar 

  17. Pathak P, Meziani MJ, Castillo L, Sun YP (2005) Green Chem 7:667

    Article  CAS  Google Scholar 

  18. Sasirekha N, Basha SJS, Shanthi K (2006) Appl Catal B: Environm 62:169

    Article  CAS  Google Scholar 

  19. Zhao ZH, Fan JM, Wang ZZ (2007) J Clean Prod 15:1894

    Article  Google Scholar 

  20. Hofstadler K, Bauer R, Novalic S, Heisler G (1994) Environ Sci Technol 28:670

    Article  CAS  Google Scholar 

  21. Danion A, Bordes C, Disdier J, Gauvrit JY, Guillard C, Lanteri P, Jaffrezic-Renault N (2004) J Photochem Photobiol A: Chem 168:161

    Article  CAS  Google Scholar 

  22. Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renault N (2004) Appl Catal B: Environm 52:213

    Article  CAS  Google Scholar 

  23. Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renault N (2006) Int J Appl Electrom 23:187

    Google Scholar 

  24. Danion A, Disdier J, Guillard C, Jaffrezic-Renault N (2007) J Photochem Photobiol A: Chem 190:135

    Article  CAS  Google Scholar 

  25. Danion A, Disdier J, Guillard C, Paisse O, Jaffrezic-Renault N (2006) Appl Catal B: Environm 62:274

    Article  CAS  Google Scholar 

  26. Peill NJ, Bourne L, Hoffmann MR (1997) J Photochem Photobiol A: Chem 108:221

    Article  CAS  Google Scholar 

  27. Peill NJ, Hoffmann MR (1995) Environ Sci Technol 29:2974

    Article  CAS  Google Scholar 

  28. Peill NJ, Hoffmann MR (1996) Environ Sci Technol 30:2806

    Article  CAS  Google Scholar 

  29. Peill NJ, Hoffmann MR (1997) J Energ-T Asme 119:229

    CAS  Google Scholar 

  30. Peill NJ, Hoffmann MR (1998) Environ Sci Technol 32:398

    Article  CAS  Google Scholar 

  31. Xu JJ, Ao YH, Fu DG, Lin J, Lin YH, Shen XW, Yuan CW, Yin ZD (2008) J Photochem Photobiol A: Chem 199:165

    Article  CAS  Google Scholar 

  32. Chu T, Huang H, Tsai D (2006) Annual meeting of physics. American Physical Society, Taipei

    Google Scholar 

  33. Wu JCS, Lin HM, Lai CL (2005) Appl Catal A: Gen 296:194

    Article  CAS  Google Scholar 

  34. Lo CF, Wu JCS (2005) J Chin Inst Chem Eng 36:119

    CAS  Google Scholar 

  35. Nguyen TV, Choi DJ, Yang OB (2005) Res Chem Intermed 31:483

    Article  CAS  Google Scholar 

  36. Nguyen TV, Lee HC, Yang OB (2006) Sol Energy Mater Sol Cells 90:967

    Article  CAS  Google Scholar 

  37. Wu JCS, Cheng Y-T (2006) J Catal 237:393

    Article  CAS  Google Scholar 

  38. Wu J, Wu T-H, Chu T, Huang H, Tsai D (2008) Top Catal 47:131

    Article  CAS  Google Scholar 

  39. Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  40. Hirano K, Inoue K, Yatsu T (1992) J Photochem Photobiol A: Chem 64:255

    Article  CAS  Google Scholar 

  41. Gattrell M, Gupta N, Co A (2006) J Electroanal Chem 594:1

    Article  CAS  Google Scholar 

  42. Hori Y, Takahashi I, Koga O, Hoshi N (2002) J Phys Chem B 106:15

    Article  CAS  Google Scholar 

  43. Hori Y, Wakebe H, Tsukamoto T, Koga O (1995) Surf Sci 335:258

    Article  CAS  Google Scholar 

  44. Habibi MH, Hassanzadeh A, Zeini-Isfahani A (2006) Dyes Pigments 69:111

    Article  CAS  Google Scholar 

  45. Tachibana H, Yamanaka Y, Sakai H, Abe M, Matsumoto M (2000) J Lumin 87–9:800

    Article  Google Scholar 

  46. Kuroda S (2004) Adv Colloid Interface Sci 111:181

    Article  CAS  Google Scholar 

  47. Anpo M, Aikawa N, Kubokawa Y (1984) J Phys Chem 88:3998

    Article  CAS  Google Scholar 

  48. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637

    Article  CAS  Google Scholar 

  49. Howe RF, Gratzel M (1987) J Phys Chem 91:3906

    Article  CAS  Google Scholar 

  50. Serpone N, Lawless D, Disdier J, Herrmann J-M (1994) Langmuir 10:643

    Article  CAS  Google Scholar 

  51. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Rev 1:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. S. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J.C.S. Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catal Surv Asia 13, 30–40 (2009). https://doi.org/10.1007/s10563-009-9065-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-009-9065-9

Keywords

Navigation