Skip to main content
Log in

Vanadium Oxide Based Nanostructured Materials for Catalytic Oxidative Dehydrogenation of Propane: Effect of Heterometallic Centers on the Catalyst Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic properties of a series of new class of catalysts materials—[Co3(H2O)12V18O42 (XO4)].24H2O (VNM-Co), [Fe3(H2O)12V18O42(XO4)].24H2O (VNM-Fe) (X = V, S) and [H6Mn3(H2O)12V18O42(VO4)].30H2O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {V18O42(XO4)} (X = V, S) clusters interconnected by {–O–M–O–} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 °C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 °C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 °C and this process is completed at 600 °C.

Graphical Abstract

Catalytic property studies of a series of nanostructured materials—[Co3(H2O)12V18O42 (XO4)].24H2O (VNM-Co), [Fe3(H2O)12V18O42(XO4)].24H2O (VNM-Fe) (X = V, S) and [H6Mn3(H2O)12V18O42(VO4)].30H2O for the oxidative dehydrogenation of propane shows the considerable effect of heterometallic centers on the catalyst performance; the catalyst containing cobalt showed the best performance in terms of propane conversion and selectivity at 350°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. http://www.cmaiglobal.com/news/WPSS.pdf no

  2. Yoon YS, Fujikawa N, Ueda W, Morooka Y, Lee KW (1995) Catal Today 24:327

    Article  CAS  Google Scholar 

  3. Chen KD, Iglesia E, Bell AT (2001) Stud Surf Sci Catal 136:507

    Article  CAS  Google Scholar 

  4. Chen KD, Xie SB, Bell AT, Iglesia E (2001) J Catal 198:232

    Article  CAS  Google Scholar 

  5. Chen KD, Iglesia E, Bell AT (2001) J Phys Chem B 105:646

    Article  CAS  Google Scholar 

  6. Chen KD, Xie SB, Bell AT, Iglesia E (2000) J Catal 195:244

    Article  CAS  Google Scholar 

  7. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463

    Article  CAS  Google Scholar 

  8. Sam DSH, Soenen V, Volta C (1990) J Catal 123:417

    Article  CAS  Google Scholar 

  9. Corma A, Lopez-Nieto JM, Paredes N, Perez M, Shen Y, Cao H, Suib SL (1992) Stud Surf Sci Catal 72:213

    Article  CAS  Google Scholar 

  10. Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343

    Article  CAS  Google Scholar 

  11. Kung HH, Kung MC (1997) Appl Catal A-Gen 157:105

    Article  CAS  Google Scholar 

  12. Banares MA, Khatib SJ (2004) Catal Today 96:251

    Article  CAS  Google Scholar 

  13. Liu YM, Feng WL, Wang LC, Cao Y, Dai WL, He HY, Fan KN (2006) Catal Lett 106:145

    Article  CAS  Google Scholar 

  14. Lemonidou AA, Nalbandian L, Vasalos IA (2000) Catal Today 61:333

    Article  CAS  Google Scholar 

  15. Smits RHH, Seshan K, Leemreize H, Ross JRH (1993) Catal Today 16:513

    Article  CAS  Google Scholar 

  16. Smits RHH, Seshan K, Ross JRH (1991) J Chem Soc-Chem Comm 8:558

    Article  Google Scholar 

  17. Smits RHH, Vries YA, Seshan K, Ross JRH (1995) Stud Surf Sci Catal 92:203

    CAS  Google Scholar 

  18. Centi G, Perathoner S, Trifiro F, Aboukais A, Aissi CF, Guelton M (1992) J Phys Chem 96:2617

    Article  CAS  Google Scholar 

  19. Au CT, Zhang WD, Wan HL (1996) Catal Lett 37:241

    Article  CAS  Google Scholar 

  20. Day VW, Klemperer WG, Yaghi OM (1989) J Am Chem Soc 111:5959

    Article  CAS  Google Scholar 

  21. Day VW, Klemperer WG, Yagasaki A (1990) Chem Lett 8:1267

    Article  Google Scholar 

  22. Day VW, Klemperer WG, Maltbie DJ (1987) J Am Chem Soc 109:2991

    Article  CAS  Google Scholar 

  23. Dong H, Hagen KS, Hill CL (1993) J Chem Soc-Chem Comm 4:426

    Google Scholar 

  24. Hou D, Hagen KS, Hill CL (1992) J Am Chem Soc 114:5864

    Article  CAS  Google Scholar 

  25. Khan MI, Yohannes E, Doedens RJ (1999) Angew Chemie Int Ed Engl 38:1292

    Article  CAS  Google Scholar 

  26. Mizuno N, Misono M (1998) Chem Rev 98:199

    Article  CAS  Google Scholar 

  27. Khan MI, Yohannes E, Powell D (1999) Inorg Chem 38:212

    Article  CAS  Google Scholar 

  28. Khan MI (2000) J Solid State Chem 152:105

    Article  CAS  Google Scholar 

  29. Khan MI, Deb S, Marshall CL (2009) Catal Lett 128:256

    Article  Google Scholar 

  30. Segre CU, Leyarovska NE, Chapman LD, Lavender WM, Plag PW, King AS, Kropf JA, Bunker BA, Kemner KM, Dutta P, Duran RS, Kaduk J, Synchrotron Radiation Instrumentation: Eleventh U.S. Conference CP521 419–422 (2000)

  31. Ravel B, Newville M (2005) Physica Scripta T115:1007

    Article  CAS  Google Scholar 

  32. Ravel B, Newville M (2005) J Synschrotron Rad 12:537

    Article  CAS  Google Scholar 

  33. Ressler T (1998) J Synchrotron Rad 5:118

    Article  CAS  Google Scholar 

  34. Misono M (1987) Catal Rev-Sci Eng 29:269

    Article  CAS  Google Scholar 

  35. Al-Zahrani SM, Jibril BY, Abasaeed AE (2001) J Mol Catal A Chem 175:259

    Article  CAS  Google Scholar 

  36. Bardin BB, Davis RJ (1999) Appl Catal A Gen 185:283

    Article  CAS  Google Scholar 

  37. Dimitratos N, Ve′drine JC (2003) Catal Today 81:561

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant (to M.I.K.) from King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ishaque Khan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.I., Deb, S., Aydemir, K. et al. Vanadium Oxide Based Nanostructured Materials for Catalytic Oxidative Dehydrogenation of Propane: Effect of Heterometallic Centers on the Catalyst Performance. Catal Lett 135, 282–290 (2010). https://doi.org/10.1007/s10562-010-0275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0275-6

Keywords

Navigation