Skip to main content

Advertisement

Log in

Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Amniotic membrane (AM) is the innermost, multilayered part of the placenta. When harvested, processed and stored properly, its properties, stemming from AM biological composition, make it a useful tissue for ophthalmic surgery. AM was shown to have several beneficial effects: it promotes epithelization, has antimicrobial effects, decreases inflammation, fibrosis and neovascularization. Many case reports and case series as well as practical experience (e.g. reconstruction of conjunctival and corneal defects, treatment of corneal ulcers) demonstrated the beneficial effect of AM for different ophthalmological indications. The combination of the above mentioned beneficial effects and reasonable mechanical properties are also the reason why AM is used as a substrate for ex vivo expansion of epithelial progenitor cells. Recently, amnion-derived cells, which also have stem cell characteristics, have been proposed as potential contributors to cell-based treatment of ocular surface disease. However, the use of AM remains one of the least standardized methods in ophthalmic surgery. In this review, the various properties of AM and its current clinical use in ophthalmology in Slovenia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adds PJ, Hunt C, Hartley S (2001a) Bacterial contamination of amniotic membrane. Br J Ophthalmol 85(2):228–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adds PJ, Hunt CJ, Dart JKG (2001b) Amniotic membrane grafts, ‘fresh’ or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85(8):905–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2(8254):1003–1005

    CAS  PubMed  Google Scholar 

  • Alió JL, Abad M, Scorsetti DH (2005) Preparation, indications and results of human amniotic membrane transplantation for ocular surface disorders. Expert Rev Med Dev 2(2):153–160

    Google Scholar 

  • Altinok AA, Balikoglu M, Sen E, Serdar K (2010) Nonpreserved amniotic membrane transplantation for bilateral toxic keratopathy caused by topical anesthetic abuse: a case report. J Med Case Rep 4:262–264

    PubMed Central  PubMed  Google Scholar 

  • Ang LPK, Tan DTH, Cajucom-Uy H, Roger W, Beuerman RW (2005) Autologous cultivated conjunctival transplantation for pterygium surgery. Am J Ophthalmol 139(4):611–619

    PubMed  Google Scholar 

  • Anon J (1999) Analysis of human amniotic membrane components as proteinase inhibitors for development of therapeutic agent for recalcitrant keratitis. Placenta 20(Supplement 1):453–466

    Google Scholar 

  • Azuara-Blanco A, Pillai ACT, Dua HS (1999) Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 83(4):399–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer D, Wasmuth S, Hermans P, Hennig M, Meller K, Meller D, van Rooijen N, Tseng SCG, Steuhl KP, Heiligenhaus A (2007) On the influence of neutrophils in corneas with necrotizing HSV-1 keratitis following amniotic membrane transplantation. Exp Eye Res 85(3):335–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer D, Wasmuth S, Hennig M, Baehler H, Steuhl KP, Heiligenhaus A (2009) Amniotic membrane transplantation induces apoptosis in T lymphocytes in murine corneas with experimental herpetic stromal keratitis. Invest Ophth Vis Sci 50(7):3188–3198

    Google Scholar 

  • Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17(8):955–968

    PubMed  Google Scholar 

  • Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne G (1962) The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgrad Med J 38:193–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM (2004) The novel antimicrobial peptide Beta3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol 191(5):1678–1687

    CAS  PubMed  Google Scholar 

  • Busch MP, Glynn SA, Stramer SL, Strong DM, Caglioti S, Wright DJ, Pappalardo B, Kleinman SH (2005) A new strategy for estimating risks of transfusion-transmitted viral infections based on rates of detection of recently infected donors. Transfusion 45(2):254–264

    PubMed  Google Scholar 

  • Capeáns C, Piñeiro A, Pardo M, Sueiro-López C, Blanco MJ, Domínguez F, Manuel SS (2003) Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol Scan 81(3):271–277

    Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    CAS  PubMed  Google Scholar 

  • Chen YT, Li W, Hayashida Y, He H, Chen SY, Tseng DY, Kheirkhah A, Tseng SCG (2007) Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells 25(8):1995–2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho BJ, Djalilian AR, Obritsch WF, Matteson DM, Chan CC, Holland EJ (1999) Conjunctival epithelial cells cultured on human amniotic membrane fail to trans differentiate into corneal epithelial-type cells. Cornea 18(2):216–224

    CAS  PubMed  Google Scholar 

  • Choi JA, Jin HJ, Jung S, Yang E, Choi JS, Chung SH, Joo CK (2009) Effects of amniotic membrane suspension in human corneal wound healing in vitro. Mol Vis 15:2230–2238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper LJ, Kinoshita S, German M, Koizumi N, Nakamura T, Fullwood NJ (2005) An investigation into the composition of amniotic membrane used for ocular surface reconstruction. Cornea 24(6):722–729

    PubMed  Google Scholar 

  • Danforth D, Hull RW (1958) The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am J Obstet Gynecol 75(3):536–547

    CAS  PubMed  Google Scholar 

  • de Oliveira Deolinda, Pena J, Melo GB, Gomes JA, Haapalainen EF, Komagome CM, Santos NC, Souza Lima Filho AA, Rizzo LV (2007) Ultrastructural and growth factor analysis of amniotic membrane preserved by different methods for ocular surgery. Arq Bras Oftalmol 70(5):756–762

    Google Scholar 

  • De Rotth A (1940) Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 23(3):522–525

    Google Scholar 

  • Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111(4):846–857

    PubMed  Google Scholar 

  • Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Brit J Ophthalmol 83(6):748–752

    CAS  Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44(5):415–425

    CAS  PubMed  Google Scholar 

  • Dua HS, Pereira Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 19(1):51–77

    Google Scholar 

  • Endo K, Nakamura T, Kawasaki S, Kinoshita S (2004) Human amniotic membrane, like corneal epithelial basement membrane, manifests the Alpha5 chain of type IV collagen. Invest Ophth Vis Sci 45(6):1771–1774

    Google Scholar 

  • Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC (2010) Value of human amniotic epithelial cells in tissue engineering for Cornea. Hum Cell 23(4):141–151

    CAS  PubMed  Google Scholar 

  • Fidel PL Jr, Romero R, Ramirez M, Cutright J, Edwin SS, LaMarche S, Cotton DB, Mitchell MD (1994) Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol 32(1):1–7

    PubMed  Google Scholar 

  • Fortunato SJ, Menon RP, Swan KF, Menon R (1996) Inflammatory cytokine (interleukins 1, 6 and 8 and Tumor Necrosis Factor-Alpha) release from cultured human fetal membranes in response to endotoxic lipopolysaccharide mirrors amniotic fluid concentrations. Am J Obstet Gynecol 174(6):1855–1861

    CAS  PubMed  Google Scholar 

  • Fortunato SJ, Menon R, Lombardi SJ (1998) Presence of four tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3 and -4) in human fetal membranes. Am J Reprod Immunol 40(6):395–400

    CAS  PubMed  Google Scholar 

  • Fukuda K, Chikama TI, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components Type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 18(1):73–79

    CAS  PubMed  Google Scholar 

  • Garfias Y, Zaga-Clavellina V, Vadillo-Ortega F, Osorio M, Jimenez-Martinez MC (2011) Amniotic membrane is an immunosuppressor of peripheral blood mononuclear cells. Immunol Invest 40(2):183–196

    CAS  PubMed  Google Scholar 

  • Gicquel JJ, Dua HS, Brodie A, Mohammed I, Suleman H, Lazutina E, James DK, Hopkinson A (2009) Epidermal growth factor variations in amniotic membrane used for ex vivo tissue constructs. Tissue Eng Part A 15(8):1919–1927

    CAS  PubMed  Google Scholar 

  • Gipson IK, Spurr-Michaud SJ, Tisdale AS (1987) Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophth Vis Sci 28(2):212–220

    CAS  Google Scholar 

  • Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646

    PubMed  Google Scholar 

  • Hammer A, Hutter H, Blaschitz A, Mahnert W, Hartmann M, Uchanska-Ziegler B, Ziegler A, Dohr G (1997) Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol 37(2):161–171

    CAS  PubMed  Google Scholar 

  • Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19(3):348–352

    CAS  PubMed  Google Scholar 

  • Harirah HM, Donia SE, Parkash V, Jones DC, Hsu CD (2002) Localization of the Fas-Fas ligand system in human fetal membranes. J Reprod Med 47(8):611–616

    CAS  PubMed  Google Scholar 

  • He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y, Zhu YT, Tseng SCG (2008) Suppression of activation and induction of apoptosis in RAW264.7 cells by amniotic membrane extract. Invest Ophth Vis Sci 49(10):4468–4475

    Google Scholar 

  • He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SCG (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 284(30):20136–20146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heiligenhaus A, Bauer D, Meller D, Steuhl KP, Tseng SCG (2001) Improvement of HSV-1 necrotizing keratitis with amniotic membrane transplantation. Invest Ophth Vis Sci 42(9):1969–1974

    CAS  Google Scholar 

  • Heiligenhaus A, Bauer D, Wasmuth S, Steuhl KP (2003) Amniotic membrane transplantation improves herpetic keratitis by local and not by systemic effects. Ophthalmologe 100(3):209–215

    CAS  PubMed  Google Scholar 

  • Heiligenhaus A, Li H, Yang Y, Wasmuth S, Bauer D, Steuhl KP (2004) Amniotic membrane transplantation improves experimental herpetic keratitis. Modulation of matrix metalloproteinase-9. Ophthalmologe 101(1):59–65

    CAS  PubMed  Google Scholar 

  • Heiligenhaus A, Li HF, Yang Y, Wasmuth S, Steuhl KP, Bauer D (2005) Transplantation of amniotic membrane in murine herpes stromal keratitis modulates matrix metalloproteinases in the cornea. Invest Ophth Vis Sci 46(11):4079–4085

    Google Scholar 

  • Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8(1):1–8

    CAS  PubMed  Google Scholar 

  • Higa K, Shimmura S, Shimazaki J, Kazuo T (2005) Hyaluronic Acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24(2):206–212

    PubMed  Google Scholar 

  • Higa K, Shimmura S, Shimazaki J, Tsubota K (2006) Ocular surface epithelial cells up-regulate HLA-G when expanded in vitro on amniotic membrane substrates. Cornea 25(6):715–721

    PubMed  Google Scholar 

  • Hopkinson A, McIntosh RS, Tighe PJ, James DK, Dua HS (2006a) Amniotic membrane for ocular surface reconstruction: donor variations and the effect of handling on TGF-beta content. Invest Ophth Vis Sci 47(10):4316–4322

    Google Scholar 

  • Hopkinson A, McIntosh RS, Shanmuganathan V, Tighe PJ, Dua HS (2006b) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5(9):2226–2235

    CAS  PubMed  Google Scholar 

  • Hunt JS, Andrews GK, Fishback JL, Feess M, Wood GW (1988) Amnion membrane epithelial cells express class I HLA and contain class I HLA mRNA. J Immunol 140(8):2790–2795

    CAS  PubMed  Google Scholar 

  • Izumi-Yoneda N, Toda A, Okabe M, Koike C, Takashima S, Yoshida T, Konishi I, Saito S, Nikaido T (2009) Alpha 1 antitrypsin activity is decreased in human amnion in premature rupture of the fetal membranes. Mol Hum Reprod 15(1):49–57

    CAS  PubMed  Google Scholar 

  • Jerman UD, Veranič P, Kreft ME (2013). Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods

  • Jiang A, Li C, Gao Y, Zhang M, Hu J, Kuang W, Hao S, Yang W, Xu C, Gao G, Wang Z, Liu T (2006) In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea 25:S36–S40

    PubMed  Google Scholar 

  • Jin CZ, Park SR, Choi BH, Lee KY, Kang CK, Min BY (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13(4):693–702

    CAS  PubMed  Google Scholar 

  • Keelan JA, Sato T, Mitchell MD (1997) Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 57(6):1438–1444

    CAS  PubMed  Google Scholar 

  • Kim JC, Tseng SCG (1995a) The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9(1):32–46

    CAS  PubMed  Google Scholar 

  • Kim JC, Tseng SCG (1995b) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14(5):473–484

    CAS  PubMed  Google Scholar 

  • Kim JS, Kim JC, Na BK, Jeong JM, Song CY (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70(3):329–337

    CAS  PubMed  Google Scholar 

  • Kim HS, Cho JH, Park HW, Yoon H, Kim MS, Kim SC (2002) Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol 168(5):2356–2364

    CAS  PubMed  Google Scholar 

  • King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JRG (2012) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28(2–3):161–169

    Google Scholar 

  • Kobayashi K, Miwa H, Yasui M (2010) Inflammatory mediators weaken the amniotic membrane barrier through disruption of tight junctions. J Physiol 588:4859–4869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20(3):173–177

    CAS  PubMed  Google Scholar 

  • Kolega J, Manabe M, Sun TT (1989) Basement membrane heterogeneity and variation in corneal epithelial differentiation. Differentiation 42(1):54–63

    CAS  PubMed  Google Scholar 

  • Kreft ME, Dragin U (2010) Amniotic membrane in tissue engineering and regenerative medicine. Zdrav Vestn 79:707–715

    Google Scholar 

  • Kruse FE, Joussen AM, Rohrschneider K, You L, Sinn B, Baumann J, Völcker HE (2000) Cryopreserved human amniotic membrane for ocular surface reconstruction. Graef Arch Clin Exp 238(1):68–75

    CAS  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophth Vis Sci 42(7):1539–1546

    CAS  Google Scholar 

  • Küçükerdönmez C, Akova YA, Altinörs DD (2007) Vascularization is more delayed in amniotic membrane graft than conjunctival autograft after pterygium excision. Am J Ophthalmol 143(2):245–249

    PubMed  Google Scholar 

  • Kurpakus MA, Stock EL, Jones JC (1992) The role of the basement membrane in differential expression of keratin proteins in epithelial cells. Dev Biol 150(2):243–255

    CAS  PubMed  Google Scholar 

  • Kurpakus MA, Daneshvar C, Davenport J, Kim A (1999) Human corneal epithelial cell adhesion to laminins. Curr Eye Res 19(2):106–114

    CAS  PubMed  Google Scholar 

  • Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312

    CAS  PubMed  Google Scholar 

  • Lee SB, Li DQ, Tan DT, Meller DC, Tseng SC (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20(4):325–334

    CAS  PubMed  Google Scholar 

  • Letko E, Stechschulte SU, Kenyon KR, Sadeq N, Romero TR, Samson CM, Nguyen QD, Harper SL, Primack JD, Azar DT, Gruterich M, Dohlman CH, Baltatzis S, Foster CS (2001) Amniotic membrane inlay and overlay grafting for corneal epithelial defects and stromal ulcers. Arch Ophthalmol 119(5):659–663

    CAS  PubMed  Google Scholar 

  • Levis H, Daniels JT (2009) New technologies in limbal epithelial stem cell transplantation. Curr Opin Biotech 20:593–597

    CAS  PubMed  Google Scholar 

  • Li H, Niederkorn JY, Neelam S, Mayhew E, Word RY, McCulley JP, Alizadeh H (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophth Vis Sci 46(3):900–907

    Google Scholar 

  • Li W, He H, Kawakita T, Espana EM, Tseng SCG (2006) Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Exp Eye Res 82(2):282–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Libera RD, De Melo GB, Lima AS, Haapalainen EF, Cristovam P, Pereira Gomes JA (2008) Assessment of the use of cryopreserved x freeze-dried amniotic membrane (AM) for reconstruction of ocular surface in rabbit model. Arq Bras Oftalmol 71(5):669–673

    PubMed  Google Scholar 

  • Liu J, Sheha H, Fu Y, Liang L, Tseng SC (2010) Update on amniotic membrane transplantation. Expert Rev Ophthalmol 5(5):645–661

    Google Scholar 

  • López-Valladares MJ, Rodríguez-Ares MT, Touriño R, Gude F, Teresa Silva M, Couceiro J (2010) Donor age and gestational age influence on growth factor levels in human amniotic membrane. Acta Ophthalmol 88(6):211–216

    Google Scholar 

  • Ma DK, Yao JY, Yeh LK, Liang ST, See LC, Chen HT, Lin KY, Liang CC, Lin KK, Chen JK (2004) In vitro antiangiogenic activity in ex vivo expanded human limbocorneal epithelial cells cultivated on human amniotic membrane. Invest Ophth Vis Sci 45(8):2586–2595

    Google Scholar 

  • Madhavan HN, Priya K, Malathi J, Joseph PR (2002) Preparation of amniotic membrane for ocular surface reconstruction. Indian J Ophthalmol 50(3):227–231

    PubMed  Google Scholar 

  • Magatti M, De Munari S, Vertua E, Parolini O (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med 16(9):2208–2218

    CAS  PubMed  Google Scholar 

  • Main DM, Gabbe SG, Richardson D, Strong S (1985) Can preterm deliveries be prevented? Am J Obstet Gynecol 151(7):892–898

    CAS  PubMed  Google Scholar 

  • Malak TM, Ockleford CD, Bell SC, Dalgleish R, Bright N, Macvicar J (1993) Confocal immunofluorescence localization of collagen Types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14(4):385–406

    CAS  PubMed  Google Scholar 

  • Mariappan I, Maddileti S, Savy S, Tiwari S, Gaddipati S, Fatima A, Sangwan VS, Balasubramanian D, Vemuganti GK (2010) In vitro culture and expansion of human limbal epithelial cells. Nat Protoc 5(8):1470–1479

    CAS  PubMed  Google Scholar 

  • Meinert M, Eriksen GV, Petersen AC, Helmig RB, Laurent C, Uldbjerg N, Malmström A (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184(4):679–685

    CAS  PubMed  Google Scholar 

  • Mejía LF, Acosta C, Santamaría JP (2000) Use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 19(3):288–291

    PubMed  Google Scholar 

  • Meller D, Tseng SCG (1999) Conjunctival epithelial cell differentiation on amniotic membrane. Invest Ophth Vis Sci 40(5):878–886

    CAS  Google Scholar 

  • Meller D, Pires RTF, Tseng SCG (2002a) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86(4):463–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meller D, Dabul V, Tseng SCG (2002b) Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res 74(4):537–545

    CAS  PubMed  Google Scholar 

  • Menzel-Severing J (2011) Emerging techniques to treat limbal epithelial stem cell deficiency. Discov Med 11(56):57–64

    PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549–1559

    CAS  PubMed  Google Scholar 

  • Muldashev ER, Uimen TD, Kurchatova NN, Zimina NP, Gur’ianov AS, Inchenko KS (1994) Effect of a graft extract for eyelid plasty of the Alloplant (TM) series on DNA synthesis in cell culture. Biull Eksp Biol Med 117(1):75–79

    CAS  PubMed  Google Scholar 

  • Nakamura T, Yoshitani M, Rigby H, Fullwood NJ, Ito W, Inatomi T, Sotozono C, Nakamura T, Shimizu Y, Kinoshita S (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophth Vis Sci 45(1):93–99

    Google Scholar 

  • Ni J, Abrahamson M, Zhang M, Fernandez MA, Grubb A, Su J, Yu GL, Li Y, Parmelee D, Xing L, Coleman TA, Gentz S, Thotakura R, Nguyen N, Hesselberg M, Gentz R (1997) Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J Biol Chem 272:10853–10858

    CAS  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99

    CAS  Google Scholar 

  • Niwa H, Masui S, Chambers I, Smith AG, Miyazaki J (2002) Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of OCT-3/4 in embryonic stem cells. Mol Cell Biol 22(5):1526–1536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Notara M, Alatza A, Gilfillan J, Harris AR, Levis HJ, Schrader S, Vernon A, Daniels JT (2010) In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res 90(2):188–195

    CAS  PubMed  Google Scholar 

  • Ockleford C, Malak T, Hubbard A, Bracken K, Burton SA, Bright N, Blakey G, Goodliffe J, Garrod D, D’Lacey C (1993) Confocal and conventional immunofluorescence and ultrastructural localisation of intracellular strength-giving components of human amniochorion. J Anat 183:483–505

    PubMed Central  PubMed  Google Scholar 

  • Ohno-Matsui K, Ichinose S, Nakahama K, Yoshida T, Kojima A, Mochizuki M, Morita I (2005) The effects of amniotic membrane on retinal pigment epithelial cell differentiation. Mol Vis 11:1–10

    CAS  PubMed  Google Scholar 

  • Ohshima M, Tokunaga K, Sato S, Maeno M, Otsuka K (2003) Laminin- and fibronectin-like molecules produced by periodontal ligament fibroblasts under serum-free culture are potent chemoattractants for gingival epithelial cells. J Periodontal Res 38(2):175–181

    CAS  PubMed  Google Scholar 

  • Park WC, Tseng SCG (2000) Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophth Vis Sci 41(10):2906–2914

    CAS  Google Scholar 

  • Parolini O, Caruso M (2011) Review: preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 32(Suppl 2):S186–S195

    PubMed  Google Scholar 

  • Parolini O, Alviano F, Bergwerf I, Boraschi D, De Bari C, De Waele P, Dominici M, Evangelista M, Falk W, Hennerbichler S, Hess DC et al (2010) Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 19(2):143–154

    PubMed  Google Scholar 

  • Rahman I, Said DG, Maharajan VS, Dua HS (2009) Amniotic membrane in ophthalmology: indications and limitations. Eye 23(10):1954–1961

    CAS  PubMed  Google Scholar 

  • Rama P, Giannini R, Bruni A, Gatto C, Tiso R, Ponzin D (2001) Further evaluation of amniotic membrane banking for transplantation in ocular surface diseases. Cell Tissue Bank 2(3):155–163

    CAS  PubMed  Google Scholar 

  • Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31(2):216–225

    CAS  PubMed  Google Scholar 

  • Ricci E, Vanosi G, Lindenmair A, Hennerbichler S, Peterbauer-Scherb A, Wolbank S, Cargnoni A, Signoroni PB, Campagnol M, Gabriel C, Redl H, Parolini O (2013) Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank 14(3):475–488

    CAS  PubMed  Google Scholar 

  • Rodríguez-Ares MT, López-Valladares MJ, Touriño R, Vieites B, Gude F, Silva MT, Couceiro J (2009) Effects of lyophilization on human amniotic membrane. Acta Ophthalmol 87(4):396–403

    PubMed  Google Scholar 

  • Rowe TF, King LA, MacDonald PC, Casey ML (1997) Tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 expression in human amnion mesenchymal and epithelial cells. Am J Obstet Gynecol 176(4):915–921

    CAS  PubMed  Google Scholar 

  • Runić R, Lockwood CJ, LaChapelle L, Dipasquale B, Demopoulos RI, Kumar A, Guller S (1998) Apoptosis and Fas expression in human fetal membranes. J Clin Endocr Metab 83(2):660–666

    PubMed  Google Scholar 

  • Russo A, Bonci P, Bonci P (2012) The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank 13(2):353–361

    CAS  PubMed  Google Scholar 

  • Sangwan VS, Basu S (2011) Antimicrobial properties of amniotic membrane. Br J Ophthalmol 95(1):1–2

    PubMed  Google Scholar 

  • Shao C, Sima J, Zhang SX, Jin J, Reinach P, Wang Z, Ma J (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophth Vis Sci 45(6):1758–1762

    Google Scholar 

  • Shay E, He H, Sakurai S, Tseng SCG (2011) Inhibition of angiogenesis by HC·HA, a complex of hyaluronan and the heavy chain of inter-α-inhibitor, purified from human amniotic membrane. Invest Ophth Vis Sci 52(5):2669–2678

    CAS  Google Scholar 

  • Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20(4):408–413

    CAS  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52(5):483–502

    PubMed  Google Scholar 

  • Sippel KC, Ma JJK, Foster CS (2001) Amniotic membrane surgery. Curr Opin Ophthalmol 12(4):269–281

    CAS  PubMed  Google Scholar 

  • Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC (2001) Suppression of Interleukin 1alpha and Interleukin 1beta in Human Limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85(4):444–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon A, Wajngarten M, Alviano F, Anteby I, Elchalal E, Pe’er J, Levi-Schaffer F (2005) Suppression of inflammatory and fibrotic responses in allergic inflammation by the amniotic membrane stromal matrix. Clin Exp Allergy 35(7):941–948

    CAS  PubMed  Google Scholar 

  • Sorsby A, Symons HM (1946) Amniotic membrane grafts in caustic burns of the eye (burns of the Second degree). Br J Ophthalmol 30:337–345

    PubMed Central  Google Scholar 

  • Sorsby A, Haythorne J, Reed H (1947) Further experience with amniotic membrane grafts in causting burns of the eye. Br J Ophthalmol 31(7):409–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spranger J, Osterhoff M, Reimann M, Möhlig M, Ristow M, Francis MK, Cristofalo V, Hammes HP, Smith G, Boulton M, Pfeiffer AF (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50(12):2641–2645

    CAS  PubMed  Google Scholar 

  • Stadler G, Hennerbichler S, Lindenmair A, Peterbauer A, Hofer K, van Griensven M, Gabriel C, Redl H, Wolbank S (2008) Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 10(7):743–752

    CAS  PubMed  Google Scholar 

  • Sudha B, Jasty S, Krishnan S, Krishnakumar S (2009) Signal transduction pathway involved in the ex vivo expansion of limbal epithelial cells cultured on various substrates. Indian J Med Res 129(4):382–389

    CAS  PubMed  Google Scholar 

  • Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29(3):73–84

    CAS  PubMed  Google Scholar 

  • Takashima S, Yasuo Y, Sanzen N, Sekiguchi K, Okabe M, Yoshida T, Toda A, Nikaido T (2008) Characterization of laminin isoforms in human amnion. Tissue Cell 40(2):75–81

    CAS  PubMed  Google Scholar 

  • Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y (1991) Antibacterial properties of human amniotic membranes. Placenta 12(3):285–288

    CAS  PubMed  Google Scholar 

  • Thomasen H, Pauklin M, Steuhl KP, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graef Arch Clin Exp 247(12):1691–1700

    Google Scholar 

  • Thomasen H, Pauklin M, Noelle B, Geerling G, Vetter J, Steven P, Steuhl KP, Meller D (2011) The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr Eye Res 36(3):247–255

    CAS  PubMed  Google Scholar 

  • Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New Engl J Med 343(2):86–93

    CAS  PubMed  Google Scholar 

  • Tsatas D, Baker MS, Moses EK, Rice GE (1998) Gene expression of plasminogen activation cascade components in human term gestational tissues with labour onset. Mol Hum Reprod 4(1):101–106

    CAS  PubMed  Google Scholar 

  • Tseng SCG, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116(4):431–441

    CAS  PubMed  Google Scholar 

  • Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179(3):325–335

    CAS  PubMed  Google Scholar 

  • Tseng SCG, Meller D, Anderson DF, Touhami A, Pires RTF, Grüterich M, Solomon A, Espana E, Sandocal H, Ti SE, Goto E (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane for treating corneal diseases with total limbal stem cell deficiency. Adv Exp Med Biol 506:1323–1334

    PubMed  Google Scholar 

  • Uçakhan OO, Köklü G, Firat E (2002) Nonpreserved human amniotic membrane transplantation in acute and chronic chemical eye injuries. Cornea 21(2):169–172

    PubMed  Google Scholar 

  • Velez I, Parker WB, Siegel MA, Hernandez M (2010) Cryopreserved amniotic membrane for modulation of periodontal soft tissue healing: a pilot study. J Periodontol 81(12):1797–1804

    PubMed  Google Scholar 

  • Von Versen-Höynck F, Syring C, Bachmann S, Möller DE (2004) The influence of different preservation and sterilisation steps on the histological properties of amnion allografts–light and scanning electron microscopic studies. Cell Tissue Bank 5(1):45–56

    Google Scholar 

  • Wang MX, Gray TB, Park WC, Prabhasawat P, Culbertson W, Forster R, Hanna K, Tseng SCG (2001) Reduction in corneal haze and apoptosis by amniotic membrane matrix in excimer laser photoablation in rabbits. J Cataract Refr Surg 27(2):310–319

    CAS  Google Scholar 

  • Weusten J, Vermeulen M, van Drimmelen H, Lelie N (2011) Refinement of a viral transmission risk model for blood donations in seroconversion window phase screened by nucleic acid testing in different pool sizes and repeat test algorithms. Transfusion 51(1):203–215

    PubMed  Google Scholar 

  • Wichayacoop T, Briksawan P, Tuntivanich P, Yibchok-Anun S (2009) Anti-inflammatory effects of topical supernatant from human amniotic membrane cell culture on canine deep corneal ulcer after human amniotic membrane transplantation. Vet Ophthalmol 12(1):28–35

    CAS  PubMed  Google Scholar 

  • Wolbank S, Hildner F, Redl H, van Griensven M, Gabriel C, Hennerbichler S (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen 3(8):651–654

    CAS  Google Scholar 

  • Wolf HJ, Schmidt W, Drenckhahn D (1991) Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res 266(2):385–389

    CAS  PubMed  Google Scholar 

  • Zhang Q, Shimoya K, Moriyama A, Yamanaka K, Nakajima A, Koyama M, Nobunaga T, Azuma C, Murata Y (2001) Production of secretory leukocyte protease inhibitor by human amniotic membranes and regulation of its concentration in amniotic fluid. Mol Hum Reprod 7(6):573–579

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation to all who contributed to the development of this field of research and therapy in Slovenia. We thank Sabina Železnik for the technical assistance. The work was supported by the Slovenian Research Agency (Grant No P3-0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Erdani Kreft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirman, T., Beltram, M., Schollmayer, P. et al. Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 15, 177–192 (2014). https://doi.org/10.1007/s10561-013-9417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-013-9417-6

Keywords

Navigation