Skip to main content
Log in

Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10 %) on expansion and adipogenic differentiation of adipose-derived stem cells using 10 % fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10 % autologous serum >10 % fetal bovine serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10 % fetal bovine serum >10 % autologous serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. Ten percent autologous serum and 10 % fetal bovine serum had greater differentiation capacity than 1 and 2 % autologous serum in vivo, and no significant difference was observed between the groups at ≥5 % concentration at 14 weeks. In conclusion, 10 % autologous serum was at least as effective as 10 % fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2 % autologous serum was inferior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14

    Article  PubMed  CAS  Google Scholar 

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  PubMed  CAS  Google Scholar 

  • Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  PubMed  Google Scholar 

  • Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. ALTEX 27:53–62

    PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Dedrick VA (1997) Determining the safety of medical devices containing animal tissues: the new European standards. J Regul Affairs Prof Soc 2:20

    Google Scholar 

  • Dimarakis I, Levicar N (2006) Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 24:1407–1408

    Article  PubMed  Google Scholar 

  • Dromard C, Bourin P, André M, De Barros S, Casteilla L, Planat-Benard V (2011) Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres. Exp Cell Res 317:770–780

    Article  PubMed  CAS  Google Scholar 

  • Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234

    Article  PubMed  CAS  Google Scholar 

  • Falkner E, Appl H, Eder C, Losert UM, Schöffl H, Pfaller W (2006) Serum free cell culture: the free access online database. Toxicol In Vitro 20:395–400

    Article  PubMed  CAS  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T et al (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    Article  PubMed  Google Scholar 

  • Kievits F, Boerenkamp WJ, Ivanyi P (1988) H-2-dependent binding of xenogeneic beta 2-microglobulin from culture media. J Immunol 140:4253–4255

    PubMed  CAS  Google Scholar 

  • Klein R, Dumble LJ (1993) Transmission of Creutzfeldt-Jakob disease by blood transfusion. Lancet 341:768

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Watanabe H, Yanagawa T et al (2005) Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. J Bone Joint Surg Br 87:1426–1433

    PubMed  CAS  Google Scholar 

  • Kocaoemer A, Kern S, Kluter H, Bieback K (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Koller MR, Maher RJ, Manchel I, Oxender M, Smith AK (1998) Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. J Hematother 7:413–423

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Mankani MH, Robey PG (2000) Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70:1780–1787

    Article  PubMed  CAS  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  • Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49:152–156

    Article  PubMed  CAS  Google Scholar 

  • McCarty RC, Xian CJ, Gronthos S, Zannettino AC, Foster BK (2010) Application of autologous bone marrow derived mesenchymal stem cells to an ovine model of growth plate cartilage injury. Open Orthop J 23:204–210

    Article  Google Scholar 

  • Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I (2008) Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthr Rheum 58:501–510

    Article  CAS  Google Scholar 

  • Oreffo RO, Virdi AS, Triffitt JT (1997) Modulation of osteogenesis and adipogenesis by human serum in human bone marrow cultures. Eur J Cell Biol 74:251–261

    PubMed  CAS  Google Scholar 

  • Pérez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, del Cañizo C, Merino J, Moreno C, Andreu EJ, Prósper F, Pérez-Simón JA (2009) Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion 49:1901–1910

    Article  PubMed  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  PubMed  CAS  Google Scholar 

  • Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366

    Article  PubMed  CAS  Google Scholar 

  • Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, Hsu SC, Smith J, Prockop DJ (2004) Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cell for cell and gene therapy. Mol Ther 9:747–756

    Article  PubMed  CAS  Google Scholar 

  • Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225

    Article  PubMed  CAS  Google Scholar 

  • Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154

    Article  PubMed  CAS  Google Scholar 

  • Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–1514

    Article  PubMed  CAS  Google Scholar 

  • von Bonin M, Stölzel F, Goedecke A, Richter K, Wuschek N, Hölig K, Platzbecker U, Illmer T, Schaich M, Schetelig J, Kiani A, Ordemann R, Ehninger G, Schmitz M, Bornhäuser M (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43:245–251

    Article  Google Scholar 

  • Wakitami S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206

    Article  Google Scholar 

  • Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921–925

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Chang.

Additional information

Jaehoon Choi and Jee-Hyeok Chung contributed equally to this paper as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Chung, JH., Kwon, GY. et al. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering. Cell Tissue Bank 14, 413–422 (2013). https://doi.org/10.1007/s10561-012-9341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9341-1

Keywords

Navigation