Skip to main content

Advertisement

Log in

A multi-targeted approach to treating bone metastases

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The treatment of bone-metastatic cancer now takes advantage of the unique biology of this clinical state. The complex interplay between the cancer cells and the bone microenvironment leads to a host of therapeutic targets, with agents in various stages of clinical use or study. Targets include interactions between the cancer cells and osteoclasts, osteoblasts, endothelial cells, stromal cells, hematopoietic progenitor cells, cells of the immune system, and the bone matrix. Efforts at understanding specific mechanisms of drug resistance in the bone are also ongoing. Successful clinical outcomes will be the result of co-targeting and interrupting the various tumor-supportive elements and cooperating pathways at the level of the tumor cell, the primary and metastatic microenvironments, and systemic cancer effects, leading to a “scaled network disruption” to undermine the disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li, S., Peng, Y., Weinhandl, E. D., Blaes, A. H., Cetin, K., & Chia, V. M., et al. (2012). Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin Epidemiol, 4, 87–93.

  2. Loberg, R. D., Bradley, D. A., Tomlins, S. A., Chinnaiyan, A. M., & Pienta, K. J. (2007). The lethal phenotype of cancer: the molecular basis of death due to malignancy. CA: A Cancer Journal for Clinicians, 57(4), 225–241.

    Google Scholar 

  3. Fidler, I. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 1–6.

    Article  Google Scholar 

  4. Paget, S. (1889). The distribution of secondary growth in cancer of breast. Lancet, 1, 98–101.

    Google Scholar 

  5. Ewing, J. (1919). Metastasis. In Neoplastic diseases (pp. 76–88). Philadelphia: Saunders.

    Google Scholar 

  6. Pienta, K. J., & Loberg, R. (2005). The ‘emigration, migration, and immigration’ of prostate cancer. Clinical Prostate Cancer, 4(1), 24–30.

    Article  PubMed  Google Scholar 

  7. Norton, L. (1988). A Gompertzian model of human breast cancer growth. Cancer Research, 48, 7067–7071.

    CAS  PubMed  Google Scholar 

  8. Zetter, B. (1998). Angiogenesis and tumor metastasis. Annual Review of Medicine, 49, 407–424.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, J., Loberg, R., & Taichman, R. S. (2006). The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Reviews, 25(4), 573–587.

    Article  CAS  PubMed  Google Scholar 

  10. Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., & Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood, 105(10), 3793–3801.

    Article  CAS  PubMed  Google Scholar 

  11. Jung, Y., Wang, J., Schneider, A., Sun, Y.-X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Y., Fang, M., Wang, J., Cooper, C. R., Pienta, K. J., & Taichman, R. S., et al. (2007). Expression and Activation of a v b 3 Integrins by SDF-1 / CXC12 Increases the Aggressiveness of Prostate Cancer Cells. Prostate, 67(1), 61–73.

  13. Sun, Y.-X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.

    Article  CAS  PubMed  Google Scholar 

  14. Havens, A. M., Jung, Y., Sun, Y. X., Wang, J., Shah, R., Bühring, H., et al. (2006). The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC cancer, 6, 195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jung, Y., Wang, J., Song, J., Shiozawa, Y., Wang, J., Havens, A., et al. (2007). Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood, 110(1), 82–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sikes, R. A., Nicholson, B. E., Koeneman, K. S., Edlund, N. M., Bissonette, E. A., Bradley, M. J., et al. (2004). Cellular interactions in the tropism of prostate cancer to bone. International Journal of Cancer, 110(4), 497–503.

    Article  CAS  Google Scholar 

  17. Chung, L. W. K., Baseman, A., Assikis, V., & Zhau, H. E. (2005). Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. The Journal of Urology, 173, 10–20.

    Article  PubMed  Google Scholar 

  18. Lipton, A. (2006). Future treatment of bone metastases. Clinical Cancer Research, 12(20 Pt 2), 6305s–6308s.

    Article  CAS  PubMed  Google Scholar 

  19. Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature reviews. Cancer, 2(8), 584–593.

    Article  CAS  PubMed  Google Scholar 

  20. Loberg, R. D., Logothetis, C. J., Keller, E. T., & Pienta, K. J. (2005). Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 23(32), 8232–8241.

    Article  CAS  Google Scholar 

  21. Candelaria-Quintana, D., Dayao, Z. R., & Royce, M. E. (2012). The role of antiresorptive therapies in improving patient care in early and metastatic breast cancer. Breast cancer research and treatment, 132(2), 355–363.

    Article  CAS  PubMed  Google Scholar 

  22. Fornier, M. N. (2010). Denosumab: second chapter in controlling bone metastases or a new book? Journal of Clinical Oncology, 28(35), 5127–5131.

    Article  CAS  PubMed  Google Scholar 

  23. Ha, T. C., & Li, H. (2007). Meta-analysis of clodronate and breast cancer survival. British Journal of Cancer, 96(12), 1796–1801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wu, S., Dahut, W. L., & Gulley, J. L. (2007). The use of bisphosphonates in cancer patients. Acta Oncologica, 46(5), 581–591.

    Article  CAS  PubMed  Google Scholar 

  25. Saad, F., Gleason, D. M., Murray, R., Tchekmedyian, S., Venner, P., Lacombe, L., et al. (2004). Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. Journal of the National Cancer Institute, 96(11), 879–882.

    Article  CAS  PubMed  Google Scholar 

  26. Lüftner, D., Henschke, P., & Possinger, K. (2007). Clinical value of bisphosphonates in cancer therapy. Anticancer research, 27(4A), 1759–1768.

    PubMed  Google Scholar 

  27. Schwarz, E. M., & Ritchlin, C. T. (2007). Clinical development of anti-RANKL therapy. Arthritis Research & Therapy, 9(Suppl 1), S7.

    Article  Google Scholar 

  28. Tsourdi, E., Rachner, T. D., Rauner, M., Hamann, C., & Hofbauer, L. C. (2011). Denosumab for bone diseases: translating bone biology into targeted therapy. European Journal of Endocrinology, 165(6), 833–840.

    Article  CAS  PubMed  Google Scholar 

  29. Miyazaki, T., Tanaka, S., Sanjay, A., & Baron, R. (2006). The role of c-Src kinase in the regulation of osteoclast function. Modern Rheumatology, 16(2), 68–74.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, F., Reeves, K., Han, X., Fairchild, C., Platero, S., Wong, T. W., et al. (2007). Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer research, 67(5), 2226–2238.

    Article  CAS  PubMed  Google Scholar 

  31. Vandyke, K., Dewar, A. L., Diamond, P., Fitter, S., Schultz, C. G., Sims, N. A., et al. (2010). The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. Journal of Bone and Mineral Research, 25(8), 1759–1770.

    Article  CAS  PubMed  Google Scholar 

  32. Ritchie, C. K., Andrews, L. R., Thomas, K. G., Tindall, D. J., & Fitzpatrick, L. A. (1997). The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis : implications for the development of metastatic disease. Endocrinology, 138(3), 1145–1150.

    CAS  PubMed  Google Scholar 

  33. Zangari, M., Esseltine, D., Lee, C.-K., Barlogie, B., Elice, F., Burns, M. J., et al. (2005). Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. British Journal of Haematology, 131, 71–73.

    Article  CAS  PubMed  Google Scholar 

  34. Terpos, E., Heath, D. J., Rahemtulla, A., Zervas, K., Chantry, A., Anagnostopoulos, A., et al. (2006). Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. British Journal of Haematology, 135(5), 688–692.

    Article  CAS  PubMed  Google Scholar 

  35. Vessella, R. L., & Corey, E. (2006). Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis. Clinical Cancer Research, 12(20 Pt 2), 6285s–6290s.

    Article  CAS  PubMed  Google Scholar 

  36. Chauhan, D., Hideshima, T., Mitsiades, C., Richardson, P., & Anderson, K. C. (2005). Proteasome inhibitor therapy in multiple myeloma. Molecular Cancer Therapeutics, 4(4), 686–692.

    Article  CAS  PubMed  Google Scholar 

  37. Kane, R. C., Dagher, R., Farrell, A., Ko, C.-W., Sridhara, R., Justice, R., et al. (2007). Bortezomib for the treatment of mantle cell lymphoma. Clinical Cancer Research, 13(18 Pt 1), 5291–5294.

    Article  CAS  PubMed  Google Scholar 

  38. Sartor, O. (2004). Overview of samarium Sm 153 lexidronam in the treatment of painful metastatic bone disease. Reviews in Urology, 6(Suppl 10), S3–S12.

    PubMed Central  PubMed  Google Scholar 

  39. Porter, A. T., McEwan, A. J., Powe, J. E., Reid, R., McGowan, D. G., Lukka, H., et al. (1993). Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int. J. Radiation Oncology Biol. Phys., 25, 805–813.

    Article  CAS  Google Scholar 

  40. Baczyk, M., Czepczyński, R., Milecki, P., Pisarek, M., Oleksa, R., & Sowiński, J. (2007). 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nuclear Medicine Communications, 28(4), 245–250.

    Article  PubMed  Google Scholar 

  41. Bauman, G., Charette, M., Reid, R., & Sathya, J. (2005). Radiopharmaceuticals for the palliation of painful bone metastases—a systematic review. Radiotherapy and Oncology, 75(3), 258. E1–258.E13.

    Article  CAS  PubMed  Google Scholar 

  42. Akerley, W., Butera, J., Wehbe, T., Noto, R., Stein, B., Safran, H., et al. (2002). A multiinstitutional, concurrent chemoradiation trial of strontium-89, estramustine, and vinblastine for hormone refractory prostate carcinoma involving bone. Cancer, 94(6), 1654–1660.

    Article  CAS  PubMed  Google Scholar 

  43. Tu, S. M., Millikan, R. E., Mengistu, B., Delpassand, E. S., Amato, R. J., Pagliaro, L. C., et al. (2001). Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet, 357, 336–341.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison, M. R., Wong, T. Z., Armstrong, A. J., & George, D. J. (2013). Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Management and Research, 5, 1–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rao, K. V. (2007). Lenalidomide in the treatment of multiple myeloma. American Journal of Health-System Pharmacy, 64(17), 1799–1807.

    Article  CAS  PubMed  Google Scholar 

  46. Murakami, H., Handa, H., Abe, M., Iida, S., Ishii, A., Ishikawa, T., et al. (2007). Low-dose thalidomide plus low-dose dexamethasone therapy in patients with refractory multiple myeloma. European Journal of Haematology, 79(3), 234–239.

    Article  CAS  PubMed  Google Scholar 

  47. Hicklin, D. J., & Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of Clinical Oncology, 23(5), 1011–1027.

    Article  CAS  PubMed  Google Scholar 

  48. Chinot, O. L. (2012). Bevacizumab-based therapy in relapsed glioblastoma: rationale and clinical experience to date. Expert Review of Anticancer Therapy, 12(11), 1413–1427.

    Article  CAS  PubMed  Google Scholar 

  49. Flaherty, K. T. (2007). Sorafenib: delivering a targeted drug to the right targets. Expert Review of Anticancer Therapy, 7(5), 617–626.

    Article  CAS  PubMed  Google Scholar 

  50. Pantuck, A. J., Zomorodian, N., & Belldegrun, A. S. (2006). Phase I, open-label, single-center, multiple-dose, dose-escalation clinical study of SUO11248 (sunitinib) in subjects with high-risk prostate cancer who have elected to undergo radical prostatectomy. Clinical Cancer Research, 12, 4018–4026.

    Article  CAS  PubMed  Google Scholar 

  51. Drevs, J., Zirrgiebel, U., Schmidt-Gersbach, C. I. M., Mross, K., Medinger, M., Lee, L., et al. (2005). Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Annals of Oncology, 16(4), 558–565.

    Article  CAS  PubMed  Google Scholar 

  52. Smith, D. C., Smith, M. R., Sweeney, C., Elfiky, A. A., Logothetis, C., Corn, P. G., et al. (2013). Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. Journal of Clinical Oncology, 31(4), 412–419.

    Article  CAS  PubMed  Google Scholar 

  53. Eskens, F. A. L. M., Dumez, H., Hoekstra, R., Perschl, A., Brindley, C., Böttcher, S., et al. (2003). Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins αvβ3 and αvβ5 in patients with advanced solid tumours. European Journal of Cancer, 39(7), 917–926.

    Article  CAS  PubMed  Google Scholar 

  54. Mullamitha, S. A., Ton, N. C., Parker, G. J. M., Jackson, A., Julyan, P. J., Roberts, C., et al. (2007). Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clinical Cancer Research, 13(7), 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  55. Tucker, G. C. (2006). Integrins: molecular targets in cancer therapy. Current Oncology Reports, 8(2), 96–103.

    Article  CAS  PubMed  Google Scholar 

  56. Gramoun, A., Shorey, S., Bashutski, J. D., Dixon, S. J., Sims, S. M., Heersche, J. N. M., et al. (2007). Effects of vitaxin, a novel therapeutic in trial for metastatic bone tumors, on osteoclast functions in vitro. Journal of Cellular Biochemistry, 102(2), 341–352.

    Article  CAS  PubMed  Google Scholar 

  57. Mulgrew, K., Kinneer, K., Yao, X.-T., Ward, B. K., Damschroder, M. M., Walsh, B., et al. (2006). Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Molecular Cancer Therapeutics, 5(12), 3122–3129.

    Article  CAS  PubMed  Google Scholar 

  58. Cheever, M. A., & Higano, C. S. (2011). PROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research, 17(11), 3520–3526.

    Article  PubMed  Google Scholar 

  59. Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New England Journal of Medicine, 363(5), 411–422.

    Article  CAS  PubMed  Google Scholar 

  60. So-Rosillo, R., & Small, E. J. (2006). Sipuleucel-T (APC8015) for prostate cancer. Expert Review of Anticancer Therapy, 6(9), 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  61. Park, J. W., Melisko, M. E., Esserman, L. J., Jones, L. A., Wollan, J. B., & Sims, R. (2007). Treatment with autologous antigen-presenting cells activated with the HER-2-based antigen lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. Journal of Clinical Oncology, 25(24), 3680–3687.

    Article  CAS  PubMed  Google Scholar 

  62. de Gruijl, T. D., van den Eertwegh, A. J. M., Pinedo, H. M., & Scheper, R. J. (2008). Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunology, Immunotherapy, 57(10), 1569–1577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kantoff, P. W., Schuetz, T. J., Blumenstein, B. A., Glode, L. M., Bilhartz, D. L., Wyand, M., et al. (2010). Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28(7), 1099–1105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Dayyani, F., Gallick, G. E., Logothetis, C. J., & Corn, P. G. (2011). Novel therapies for metastatic castrate-resistant prostate cancer. Journal of the National Cancer Institute, 103(22), 1665–1675.

    Article  CAS  PubMed  Google Scholar 

  65. Reck, M., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., et al. (2013). Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Annals of Oncology, 24(1), 75–83.

    Article  CAS  PubMed  Google Scholar 

  66. Margolin, K., Ernstoff, M. S., Hamid, O., Lawrence, D., McDermott, D., Puzanov, I., et al. (2012). Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. The Lancet Oncology, 13(5), 459–465.

    Article  CAS  PubMed  Google Scholar 

  67. Sun, J., Schiffman, J., Raghunath, A., Ng Tang, D., Chen, H., & Sharma, P. (2008). Concurrent decrease in IL-10 with development of immune-related adverse events in a patient treated with anti-CTLA-4 therapy. Cancer Immunity, 8, 9–15.

    PubMed Central  PubMed  Google Scholar 

  68. Fulton, A., Miller, F., Weise, A., & Wei, W.-Z. (2007). Prospects of controlling breast cancer metastasis by immune intervention. Breast Disease, 26, 115–127.

    Google Scholar 

  69. Melero, I., Grimaldi, A. M., Perez-Gracia, J. L., & Ascierto, P. A. (2013). Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clinical cancer research : an official journal of the American Association for Cancer Research, 19(5), 997–1008.

    Article  CAS  Google Scholar 

  70. Fishelson, Z., Donin, N., Zell, S., Schultz, S., & Kirschfink, M. (2003). Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Molecular Immunology, 40, 109–123.

    Article  CAS  PubMed  Google Scholar 

  71. Pritchard-Jones, K., Spendlove, I., Wilton, C., Whelan, J., Weeden, S., Lewis, I., et al. (2005). Immune responses to the 105 AD7 human anti-idiotypic vaccine after intensive chemotherapy, for osteosarcoma. British Journal of Cancer, 92(8), 1358–1365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Liao, Y., Schaue, D., & McBride, W. (2007). Modification of the tumor microenvironment to enhance immunity. Frontiers in Bioscience, 12, 3576–3600.

    Article  CAS  PubMed  Google Scholar 

  73. Dirkx, A. E. M., Oude Egbrink, M. G. A., Wagstaff, J., & Griffioen, A. W. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196.

    Article  CAS  PubMed  Google Scholar 

  74. Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.

    Article  CAS  PubMed  Google Scholar 

  75. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 196, 254–265.

    Article  CAS  PubMed  Google Scholar 

  76. Sica, A., Schioppa, T., Mantovani, A., & Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. European Journal of Cancer, 42(6), 717–727.

    Article  CAS  PubMed  Google Scholar 

  77. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Reviews, 25(3), 315–322.

    Article  PubMed  Google Scholar 

  78. Porta, C., Kumar, B. S., Larghi, P., Rubino, L., Mancino, A., & Sica, A. (2007). Tumor promotion by tumor-associated macrophages. Advances in Experimental Medicine and Biology, 604, 67–86.

    Article  PubMed  Google Scholar 

  79. Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9(7), 556–562.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bailey, C., Negus, R., Morris, A., Ziprin, P., Goldin, R., Allavena, P., et al. (2007). Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clinical & Experimental Metastasis, 24(2), 121–130.

    Article  CAS  Google Scholar 

  81. Craig, M. J., & Loberg, R. D. (2006). CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases. Cancer Metastasis Reviews, 25(4), 611–619.

    Article  CAS  PubMed  Google Scholar 

  82. Pienta, K. J., Machiels, J.-P., Schrijvers D., Alekseev B., M. Shkolnik, & Crabb, S. J., et al. (2013). Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs, 31(3), 760–768.

    Google Scholar 

  83. Sandhu, S. K., Papadopoulos, K., Fong, P. C., Patnaik, A., Messiou, C., Olmos, D., et al. (2013). A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemotherapy and Pharmacology, 71(4), 1041–1050.

    Article  CAS  PubMed  Google Scholar 

  84. Baay, M., Brouwer, A., Pauwels, P., Peeters, M., & Lardon, F. (2011). Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy. Clinical & Developmental Immunology, p. 565187.

  85. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687–694.

    Article  CAS  PubMed  Google Scholar 

  86. Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. Journal of Clinical Investigation, 121(4), 1298–1312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Smith, M. C. P., Luker, K. E., Garbow, J. R., Prior, J. L., Jackson, E., Piwnica-Worms, D., et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 64(23), 8604–8612.

    Article  CAS  PubMed  Google Scholar 

  88. Meads, M. B., Hazlehurst, L. A., & Dalton, W. S. (2008). The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clinical Cancer Research, 14(9), 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  89. Vincent, T., & Mechti, N. (2005). Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Leukemia & Lymphoma, 46(6), 803–811.

    Article  CAS  Google Scholar 

  90. Camacho, D. F., & Pienta, K. J. (2012). Disrupting the networks of cancer. Clinical Cancer Research, 18(10), 2801–2808.

    Article  CAS  PubMed  Google Scholar 

  91. Chen, K. W., & Pienta, K. J. (2011). Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles. Theoretical Biology and Medical Modeling, 8(36), 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Pienta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, D.F., Pienta, K.J. A multi-targeted approach to treating bone metastases. Cancer Metastasis Rev 33, 545–553 (2014). https://doi.org/10.1007/s10555-013-9476-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9476-y

Keywords

Navigation