Skip to main content

Advertisement

Log in

Reconstructing skin cancers using animal models

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The American Cancer Society estimates that skin cancer is the most prevalent of all cancers with over 2 million cases of nonmelanoma skin cancer each year and 75,000 melanoma cases in 2012. Representative animal cancer models are important for understanding the underlying molecular pathogenesis of these cancers and the development of novel targeted anticancer therapeutics. In this review, we will discuss some of the important animal models that have been useful to identify important pathways involved in basal cell carcinoma, squamous cell carcinoma, and melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rubin, A. I., Chen, E. H., & Ratner, D. (2005). Basal-cell carcinoma. The New England Journal of Medicine, 353(21), 2262–2269.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, M., Qureshi, A. A., Geller, A. C., Frazier, L., Hunter, D. J., & Han, J. (2012). Use of tanning beds and incidence of skin cancer. Journal of Clinical Oncology, 30(14), 1588–1593.

    Article  PubMed  Google Scholar 

  3. Howell, J. B., & Caro, M. R. (1959). The basal-cell nevus: its relationship to multiple cutaneous cancers and associated anomalies of development. Archives of Dermatology, 79(1), 67–80.

    Article  PubMed  CAS  Google Scholar 

  4. Gorlin, R. J., & Goltz, R. W. (1960). Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. The New England Journal of Medicine, 262(18), 908–912.

    Article  PubMed  CAS  Google Scholar 

  5. Hahn, H., Wicking, C., Zaphiropoulos, P. G., Gailani, M. R., Shanley, S., Chidambaram, A., et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85(6), 841–851.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, R. L., Rothman, A. L., Xie, J., Goodrich, L. V., Bare, J. W., Bonifas, J. M., et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science, 272(5268), 1668–1671.

    Article  PubMed  CAS  Google Scholar 

  7. Gailani, M. R., Stahle-Backdahl, M., Leffell, D. J., Glyn, M., Zaphiropoulos, P. G., Unden, A. B., et al. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics, 14(1), 78–81. doi:10.1038/ng0996-78.

    Article  PubMed  CAS  Google Scholar 

  8. Kasper, M., Jaks, V., Hohl, D., & Toftgård, R. (2012). Basal cell carcinoma—molecular biology and potential new therapies. The Journal of Clinical Investigation, 122(2), 455–463.

    Article  PubMed  CAS  Google Scholar 

  9. Hooper, J. E., & Scott, M. P. (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell, 59(4), 751–765.

    Article  PubMed  CAS  Google Scholar 

  10. Lum, L., & Beachy, P. A. (2004). The hedgehog response network: sensors, switches, and routers. Science, 304(5678), 1755–1759.

    Article  PubMed  CAS  Google Scholar 

  11. Oro, A. E., Higgins, K. M., Hu, Z., Bonifas, J. M., Epstein, E. H., & Scott, M. P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 276(5313), 817–821.

    Article  PubMed  CAS  Google Scholar 

  12. Xie, J., Murone, M., Luoh, S.-M., Ryan, A., Gu, Q., Zhang, C., et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90–92. doi:10.1038/34201.

    Article  PubMed  CAS  Google Scholar 

  13. Nilsson, M., Undèn, A. B., Krause, D., Malmqwist, U., Raza, K., Zaphiropoulos, P. G., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.

    Article  PubMed  CAS  Google Scholar 

  14. Grachtchouk, M., Mo, R., Yu, S., Zhang, X., Sasaki, H., Hui, C.-c., et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genetics, 24(3), 216–217. doi:10.1038/73417.

    Article  PubMed  CAS  Google Scholar 

  15. Aszterbaum, M., Epstein, J., Oro, A., Douglas, V., LeBoit, P. E., Scott, M. P., et al. (1999). Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Medicine, 5(11), 1285–1291. doi:10.1038/15242.

    Article  PubMed  CAS  Google Scholar 

  16. Grachtchouk, V., Grachtchouk, M., Lowe, L., Johnson, T., Wei, L., Wang, A., et al. (2003). The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO Journal, 22(11), 2741–2751. doi:10.1093/emboj/cdg271.

    Article  PubMed  CAS  Google Scholar 

  17. Ramírez, A., Bravo, A., Jorcano, J. L., & Vidal, M. (1994). Sequences 5′ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation, 58(1), 53–64.

    PubMed  Google Scholar 

  18. Youssef, K. K., Van Keymeulen, A., Lapouge, G., Beck, B., Michaux, C., Achouri, Y., et al. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 12(3), 299–305. doi:10.1038/ncb2031.

    PubMed  CAS  Google Scholar 

  19. Wong, S. Y., & Reiter, J. F. (2011). Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences, 108(10), 4093–4098.

    Article  CAS  Google Scholar 

  20. Kasper, M., Jaks, V., Are, A., Bergström, Å., Schwäger, A., Svärd, J., et al. (2011). Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proceedings of the National Academy of Sciences, 108(10), 4099–4104.

    Article  CAS  Google Scholar 

  21. Ratushny, V., Gober, M. D., Hick, R., Ridky, T. W., & Seykora, J. T. (2012). From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal of Clinical Investigation, 122(2), 464–472.

    Article  PubMed  CAS  Google Scholar 

  22. Cockerell, C. J. (2000). Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”). Journal of the American Academy of Dermatology, 42(1), S11–S17.

    Article  Google Scholar 

  23. Marks, R., Rennie, G., & Selwood, T. S. (1988). Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet, 1(8589), 795–797.

    Article  PubMed  CAS  Google Scholar 

  24. Criscione, V. D., Weinstock, M. A., Naylor, M. F., Luque, C., Eide, M. J., Bingham, S. F., et al. (2009). Actinic keratoses. Cancer, 115(11), 2523–2530.

    Article  PubMed  Google Scholar 

  25. Ziegler, A., Jonason, A. S., Leffellt, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., et al. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773–776. doi:10.1038/372773a0.

    Article  PubMed  CAS  Google Scholar 

  26. Ortonne, J. P. (2002). From actinic keratosis to squamous cell carcinoma. British Journal of Dermatology, 146, 20–23.

    Article  PubMed  Google Scholar 

  27. Nakazawa, H., English, D., Randell, P. L., Nakazawa, K., Martel, N., Armstrong, B. K., et al. (1994). UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 360–364.

    Article  PubMed  CAS  Google Scholar 

  28. Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411(6835), 366–374. doi:10.1038/35077232.

    Article  PubMed  CAS  Google Scholar 

  29. Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10124–10128.

    Article  PubMed  CAS  Google Scholar 

  30. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215–221. doi:10.1038/356215a0.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang, W., Ananthaswamy, H. N., Muller, H. K., & Kripke, M. L. (1999). p53 protects against skin cancer induction by UV-B radiation. Oncogene, 18(29), 4247. Article.

    Article  PubMed  CAS  Google Scholar 

  32. Matsumoto, T., Jiang, J., Kiguchi, K., Ruffino, L., Carbajal, S., Beltrán, L., et al. (2003). Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Research, 63(16), 4819–4828.

    PubMed  CAS  Google Scholar 

  33. Kiguchi, K., Bol, D., Carbajal, S., Beltrán, L., Moats, S., Chan, K., et al. (2000). Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene, 19(37), 4243. Article.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao, L., Li, W., Marshall, C., Griffin, T., Hanson, M., Hick, R., et al. (2009). Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Research, 69(24), 9439–9447.

    Article  PubMed  CAS  Google Scholar 

  35. Khavari, P. A. (2006). Modelling cancer in human skin tissue. Nature Reviews. Cancer, 6(4), 270–280. doi:10.1038/nrc1838.

    Article  PubMed  CAS  Google Scholar 

  36. Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T., & Ananthaswamy, H. N. (1991). Ras gene mutation and amplification in human nonmelanoma skin cancers. Molecular Carcinogenesis, 4(3), 196–202.

    Article  PubMed  CAS  Google Scholar 

  37. Spencer, J. M., Kahn, S. M., Jiang, W., DeLeo, V. A., & Weinstein, I. B. (1995). Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Archives of Dermatology, 131(7), 796–800.

    Article  PubMed  CAS  Google Scholar 

  38. Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358. http://www.sanger.ac.uk/cosmic.

    PubMed  CAS  Google Scholar 

  39. Tarutani, M., Cai, T., Dajee, M., & Khavari, P. A. (2003). Inducible activation of Ras and Raf in adult epidermis. Cancer Research, 63(2), 319–323.

    PubMed  CAS  Google Scholar 

  40. Scholl, F. A., Dumesic, P. A., & Khavari, P. A. (2004). Mek1 alters epidermal growth and differentiation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 64(17), 6035–6040.

    Article  PubMed  CAS  Google Scholar 

  41. Quadros, M. R. D., Peruzzi, F., Kari, C., & Rodeck, U. (2004). Complex regulation of signal transducers and activators of transcription 3 activation in normal and malignant keratinocytes. Cancer Research, 64(11), 3934–3939.

    Article  PubMed  CAS  Google Scholar 

  42. Suiqing, C., Min, Z., & Lirong, C. (2005). Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. [Comparative Study Research Support, Non-U.S. Gov't]. Journal of Dermatology, 32(5), 354–360.

    PubMed  Google Scholar 

  43. Kim, D. J., Angel, J. M., Sano, S., & DiGiovanni, J. (2009). Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. Oncogene, 28(7), 950–960.

    Article  PubMed  CAS  Google Scholar 

  44. Chan, K. S., Sano, S., Kataoka, K., Abel, E., Carbajal, S., Beltran, L., et al. (2008). Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene, 27(8), 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  45. Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., et al. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 220–241.

    Article  Google Scholar 

  46. Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., & Reisfeld, R. A. (2010). Mouse models for melanoma: a personal perspective. Experimental Dermatology, 19(2), 157–164.

    Article  PubMed  CAS  Google Scholar 

  47. Kunisada, T., Lu, S.-Z., Yoshida, H., Nishikawa, S., Nishikawa, S.-i., Mizoguchi, M., et al. (1998). Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. The Journal of Experimental Medicine, 187(10), 1565–1573.

    Article  PubMed  CAS  Google Scholar 

  48. Yamazaki, F., Okamoto, H., Matsumura, Y., Tanaka, K., Kunisada, T., & Horio, T. (2005). Development of a new mouse model (xeroderma pigmentosum A-deficient, stem cell factor-transgenic) of ultraviolet B-induced melanoma. The Journal of Investigative Dermatology, 125(3), 521–525.

    Article  PubMed  CAS  Google Scholar 

  49. Damsky, W. E., Jr., & Bosenberg, M. (2010). Mouse melanoma models and cell lines. Pigment Cell & Melanoma Research, 23(6), 853–859.

    Article  CAS  Google Scholar 

  50. Mintz, B., & Silvers, W. K. (1993). Transgenic mouse model of malignant skin melanoma. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8817–8821.

    Article  PubMed  CAS  Google Scholar 

  51. Chin, L., Pomerantz, J., Polsky, D., Jacobson, M., Cohen, C., Cordon-Cardo, C., et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes & Development, 11(21), 2822–2834.

    Article  CAS  Google Scholar 

  52. Bardeesy, N., Bastian, B. C., Hezel, A., Pinkel, D., DePinho, R. A., & Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Molecular and Cellular Biology, 21(6), 2144–2153.

    Article  PubMed  CAS  Google Scholar 

  53. Hacker, E., Muller, H. K., Irwin, N., Gabrielli, B., Lincoln, D., Pavey, S., et al. (2006). Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. Cancer Research, 66(6), 2946–2952.

    Article  PubMed  CAS  Google Scholar 

  54. Kannan, K., Sharpless, N. E., Xu, J., O’Hagan, R. C., Bosenberg, M., & Chin, L. (2003). Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1221–1225.

    Article  PubMed  CAS  Google Scholar 

  55. Sotillo, R., Garcia, J. F., Ortega, S., Martin, J., Dubus, P., Barbacid, M., et al. (2001). Invasive melanoma in Cdk4-targeted mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13312–13317.

    Article  PubMed  CAS  Google Scholar 

  56. Powell, M. B., Hyman, P., Bell, O. D., Balmain, A., Brown, K., Alberts, D., et al. (1995). Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Molecular Carcinogenesis, 12(2), 82–90.

    Article  PubMed  CAS  Google Scholar 

  57. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi:10.1038/nature00766.

    Article  PubMed  CAS  Google Scholar 

  58. Goel, V. K., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., et al. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene, 28(23), 2289–2298.

    Article  PubMed  CAS  Google Scholar 

  59. Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.

    Article  PubMed  CAS  Google Scholar 

  60. Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi:10.1038/ng.356.

    Article  PubMed  CAS  Google Scholar 

  61. Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.1038/ng1054.

    Article  PubMed  CAS  Google Scholar 

  62. Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.

    Article  PubMed  CAS  Google Scholar 

  63. Michaloglou, C., Vredeveld, L. C. W., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M. A. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724. doi:10.1038/nature03890.

    Article  PubMed  CAS  Google Scholar 

  64. Gruis, N. A., Van der Velden, P. A., Sandkuijl, L. A., Prins, D. E., Weaver-Feldhaus, J., Kamb, A., et al. (1995). Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genetics, 10(3), 351–353.

    Article  PubMed  CAS  Google Scholar 

  65. Ruiz, A., Puig, S., Malvehy, J., Lázaro, C., Lynch, M., Gimenez-Arnau, A. M., et al. (1999). CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other neoplasia. Journal of Medical Genetics, 36(6), 490–493.

    PubMed  CAS  Google Scholar 

  66. Goldstein, A. M., Chan, M., Harland, M., Hayward, N. K., Demenais, F., Bishop, D. T., et al. (2007). Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 44(2), 99–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Seykora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gober, M.D., Bashir, H.M. & Seykora, J.T. Reconstructing skin cancers using animal models. Cancer Metastasis Rev 32, 123–128 (2013). https://doi.org/10.1007/s10555-012-9410-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9410-8

Keywords

Navigation