Skip to main content

Advertisement

Log in

PTPL1: a large phosphatase with a split personality

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Protein tyrosine phosphatase, PTPL1, (also known as PTPN13, FAP-1, PTP-BAS, PTP1E) is a non-receptor type PTP and, at 270 kDa, is the largest phosphatase within this group. In addition to the well-conserved PTP domain, PTPL1 contains at least 7 putative macromolecular interaction domains. This structural complexity indicates that PTPL1 may modulate diverse cellular functions, perhaps exerting both positive and negative effects. In accordance with this idea, while certain studies suggest that PTPL1 can act as a tumor-promoting gene other experimental studies have suggested that PTPL1 may function as a tumor suppressor. The role of PTPL1 in the cancer cell is therefore likely to be both complex and context dependent with possible roles including the modulation of growth, stress-response, and cytoskeletal remodeling pathways. Understanding the nature of molecular complexes containing PTPL1, its interaction partners, substrates, regulation and subcellular localization are key to unraveling the complex personality of this protein phosphatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESFT:

Ewing’s Sarcoma Family of Tumors

FERM:

band 4.1/ezrin/radixin/moesin

IκBα:

Inhibitor of nuclear factor kappa-B alpha

KIND:

Kinase non-catalytic C-lobe domain

PARG1:

PTPL1-associated RhoGAP1

PDZ:

PSD-95/Discs-large/ZO-1

PIP:

Phosphatidylinositol biphosphates

PIP3:

Phosphatidylinositol triphosphates

PKA:

Protein kinase-A

PTP:

Protein Tyrosine Phosphatase

TAPP:

Tandem-PH-domain-containing proteins

TNFR:

Tumor necrosis factor-receptor

TRIP6:

Thyroid Hormone Receptor-interacting Protein 6

References

  1. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.

    Article  PubMed  CAS  Google Scholar 

  2. Dube, N., & Tremblay, M. L. (2005). Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochimica et Biophysica Acta, 1754(1–2), 108–117.

    PubMed  CAS  Google Scholar 

  3. Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17(1), 23–30.

    Article  CAS  Google Scholar 

  4. Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews Cancer, 6(4), 307–320.

    Article  PubMed  CAS  Google Scholar 

  5. Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7(11), 833–846.

    Article  PubMed  CAS  Google Scholar 

  6. Banville, D., Ahmad, S., Stocco, R., & Shen, S. H. (1994). A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. Journal of Biological Chemistry, 269(35), 22320–22327.

    PubMed  CAS  Google Scholar 

  7. Maekawa, K., Imagawa, N., Nagamatsu, M., & Harada, S. (1994). Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Letters, 337(2), 200–206.

    Article  PubMed  CAS  Google Scholar 

  8. Saras, J., Claesson-Welsh, L., Heldin, C. H., & Gonez, L. J. (1994). Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. Journal of Biological Chemistry, 269(39), 24082–24089.

    PubMed  CAS  Google Scholar 

  9. Sato, T., Irie, S., Kitada, S., & Reed, J. C. (1995). FAP-1: A protein tyrosine phosphatase that associates with Fas. Science, 268(5209), 411–415.

    Article  PubMed  CAS  Google Scholar 

  10. Andersen, J. N., Jansen, P. G., Echwald, S. M., Mortensen, O. H., Fukada, T., Del Vecchio, R., et al. (2004). A genomic perspective on protein tyrosine phosphatases: Gene structure, pseudogenes, and genetic disease linkage. FASEB Journal, 18(1), 8–30.

    Article  PubMed  CAS  Google Scholar 

  11. Chishti, A. H., Kim, A. C., Marfatia, S. M., Lutchman, M., Hanspal, M., Jindal, H., et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Science, 23(8), 281–282.

    Article  CAS  Google Scholar 

  12. Ciccarelli, F. D., Bork, P., & Kerkhoff, E. (2003). The KIND module: a putative signalling domain evolved from the C lobe of the protein kinase fold. Trends in Biochemical Science, 28(7), 349–352.

    Article  CAS  Google Scholar 

  13. Bompard, G., Martin, M., Roy, C., Vignon, F., & Freiss, G. (2003). Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. Journal of Cell Science, 116(Pt 12), 2519–2530.

    Article  PubMed  CAS  Google Scholar 

  14. Herrmann, L., Dittmar, T., & Erdmann, K. S. (2003). The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Molecular Biology of the Cell, 14(1), 230–240.

    Article  PubMed  CAS  Google Scholar 

  15. Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., et al. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117–7136.

    Article  PubMed  CAS  Google Scholar 

  16. Villa, F., Deak, M., Bloomberg, G. B., Alessi, D. R., & van Aalten, D. M. (2005). Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: Evidence for a second phosphotyrosine substrate recognition pocket. Journal of Biological Chemistry, 280(9), 8180–8187.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida, S., Harada, H., Nagai, H., Fukino, K., Teramoto, A., & Emi, M. (2002). Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene. Journal of Human Genetics, 47(11), 614–619.

    Article  PubMed  CAS  Google Scholar 

  18. Irie, S., Li, Y., Kanki, H., Ohyama, T., Deaven, L. L., Somlo, S., et al. (2001). Identification of two Fas-associated phosphatase-1 (FAP-1) promoters in human cancer cells. DNA Sequence, 11(6), 519–526.

    Article  PubMed  CAS  Google Scholar 

  19. Abaan, O. D., Levenson, A., Khan, O., Furth, P. A., Uren, A., & Toretsky, J. A. (2005). PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene, 24(16), 2715–2722.

    Article  PubMed  CAS  Google Scholar 

  20. Kachel, N., Erdmann, K. S., Kremer, W., Wolff, P., Gronwald, W., Heumann, R., et al. (2003). Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. Journal of Molecular Biology, 334(1), 143–155.

    Article  PubMed  CAS  Google Scholar 

  21. Zhu, J. H., Chen, R., Yi, W., Cantin, G. T., Fearns, C., Yang, Y., et al. (2008). Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene (in press).

  22. Nedachi, T., & Conti, M. (2004). Potential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation. Development, 131(20), 4987–4998.

    Article  PubMed  CAS  Google Scholar 

  23. Dromard, M., Bompard, G., Glondu-Lassis, M., Puech, C., Chalbos, D., & Freiss, G. (2007). The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Research, 67(14), 6806–6813.

    Article  PubMed  CAS  Google Scholar 

  24. Balla, T. (2005). Inositol–lipid binding motifs: signal integrators through protein–lipid and protein–protein interactions. Journal of Cell Science, 118(Pt 10), 2093–2104.

    Article  PubMed  CAS  Google Scholar 

  25. Kimber, W. A., Deak, M., Prescott, A. R., & Alessi, D. R. (2003). Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochemical Journal, 376(Pt 2), 525–535.

    Article  PubMed  CAS  Google Scholar 

  26. Maekawa, K., Imagawa, N., Naito, A., Harada, S., Yoshie, O., & Takagi, S. (1999). Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochemical Journal, 337(Pt 2), 179–184.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, W., Tong, Q., Conrad, K., Wozney, J., Cheung, J., & Miller, B. A. (2007). Regulation of the TRP channel TRPM2 by the tyrosine phosphatase PTPL1. American Journal of Physiology Cell Physiology, 292, C1746–C1758.

    Article  PubMed  CAS  Google Scholar 

  28. Saras, J., Engstrom, U., Gonez, L. J., & Heldin, C. H. (1997). Characterization of the interactions between PDZ domains of the protein-tyrosine phosphatase PTPL1 and the carboxyl-terminal tail of Fas. Journal of Biological Chemistry, 272(34), 20979–20981.

    Article  PubMed  CAS  Google Scholar 

  29. Yanagisawa, J., Takahashi, M., Kanki, H., Yano-Yanagisawa, H., Tazunoki, T., Sawa, E., et al. (1997). The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. Journal of Biological Chemistry, 272(13), 8539–8545.

    Article  PubMed  CAS  Google Scholar 

  30. Irie, S., Hachiya, T., Rabizadeh, S., Maruyama, W., Mukai, J., Li, Y., et al. (1999). Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Letters, 460(2), 191–198.

    Article  PubMed  CAS  Google Scholar 

  31. Murthy, K. K., Clark, K., Fortin, Y., Shen, S. H., & Banville, D. (1999). ZRP-1, a zyxin-related protein, interacts with the second PDZ domain of the cytosolic protein tyrosine phosphatase hPTP1E. Journal of Biological Chemistry, 274(29), 20679–20687.

    Article  PubMed  CAS  Google Scholar 

  32. Saras, J., Franzen, P., Aspenstrom, P., Hellman, U., Gonez, L. J., & Heldin, C. H. (1997). A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. Journal of Biological Chemistry, 272(39), 24333–24338.

    Article  PubMed  CAS  Google Scholar 

  33. Lin, D., Gish, G. D., Songyang, Z., & Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. Journal of Biological Chemistry, 274(6), 3726–3733.

    Article  PubMed  CAS  Google Scholar 

  34. Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94(5), 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  35. Tiganis, T., & Bennett, A. M. (2007). Protein tyrosine phosphatase function: the substrate perspective. Biochemical Journal, 402(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  36. Nakai, Y., Irie, S., & Sato, T. A. (2000). Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. European Journal of Biochemistry, 267(24), 7170–7175.

    Article  PubMed  CAS  Google Scholar 

  37. Nakahira, M., Tanaka, T., Robson, B. E., Mizgerd, J. P., & Grusby, M. J. (2007). Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity, 26(2), 163–176.

    Article  PubMed  CAS  Google Scholar 

  38. Wansink, D. G., Peters, W., Schaafsma, I., Sutmuller, R. P., Oerlemans, F., Adema, G. J., et al. (2004). Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiological Genomics, 19(1), 50–60.

    Article  PubMed  CAS  Google Scholar 

  39. Lorber, B., Hendriks, W. J., Van der Zee, C. E., Berry, M., & Logan, A. (2005). Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. European Journal of Neuroscience, 21(9), 2375–2383.

    Article  PubMed  Google Scholar 

  40. Uren, A., & Toretsky, J. A. (2005). Ewing’s sarcoma oncoprotein EWS-FLI1: The perfect target without a therapeutic agent. Future Oncology, 1(4), 521–528.

    Article  PubMed  CAS  Google Scholar 

  41. Baer, C., Nees, M., Breit, S., Selle, B., Kulozik, A. E., Schaefer, K. L., et al. (2004). Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. International Journal of Cancer, 110(5), 687–694.

    Article  CAS  Google Scholar 

  42. Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.

    Article  PubMed  CAS  Google Scholar 

  43. Lessnick, S. L., Dacwag, C. S., & Golub, T. R. (2002). The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell, 1(4), 393–401.

    Article  PubMed  CAS  Google Scholar 

  44. Houston, A., & O’Connell, J. (2004). The Fas signalling pathway and its role in the pathogenesis of cancer. Current Opinion in Pharmacology, 4(4), 321–326.

    Article  PubMed  CAS  Google Scholar 

  45. Ungefroren, H., Voss, M., Jansen, M., Roeder, C., Henne-Bruns, D., Kremer, B., et al. (1998). Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Research, 58(8), 1741–1749.

    PubMed  CAS  Google Scholar 

  46. Ungefroren, H., Kruse, M. L., Trauzold, A., Roeschmann, S., Roeder, C., Arlt, A., et al. (2001). FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. Journal of Cell Science, 114(Pt 15), 2735–2746.

    PubMed  CAS  Google Scholar 

  47. Ivanov, V. N., Lopez Bergami, P., Maulit, G., Sato, T. A., Sassoon, D., & Ronai, Z. (2003). FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Molecular and Cellular Biology, 23(10), 3623–3635.

    Article  PubMed  CAS  Google Scholar 

  48. Meinhold-Heerlein, I., Stenner-Liewen, F., Liewen, H., Kitada, S., Krajewska, M., Krajewski, S., et al. (2001). Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. American Journal of Pathology, 158(4), 1335–1344.

    PubMed  CAS  Google Scholar 

  49. Yao, H., Song, E., Chen, J., & Hamar, P. (2004). Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. British Journal of Cancer, 91(9), 1718–1725.

    PubMed  CAS  Google Scholar 

  50. Wieckowski, E., Atarashi, Y., Stanson, J., Sato, T. A., & Whiteside, T. L. (2007). FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. Journal of Cellular Biochemistry, 100(1), 16–28.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, S. H., Shin, M. S., Lee, H. S., Bae, J. H., Lee, H. K., Kim, H. S., et al. (2001). Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Human Pathology, 32(3), 250–256.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, S. H., Shin, M. S., Lee, J. Y., Park, W. S., Kim, S. Y., Jang, J. J., et al. (1999). In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. Journal of Pathology, 188(2), 207–212.

    Article  PubMed  CAS  Google Scholar 

  53. Eberle, A., Reinehr, R., Becker, S., & Haussinger, D. (2005). Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Hepatology, 41(2), 315–326.

    Article  PubMed  CAS  Google Scholar 

  54. Barker, P. A. (2004). p75NTR is positively promiscuous: novel partners and new insights. Neuron, 42(4), 529–533.

    Article  PubMed  CAS  Google Scholar 

  55. Mamidipudi, V., & Wooten, M. W. (2002). Dual role for p75(NTR) signaling in survival and cell death: Can intracellular mediators provide an explanation? Journal of Neuroscience Research, 68(4), 373–384.

    Article  PubMed  CAS  Google Scholar 

  56. Ohrt, T., Mancini, A., Tamura, T., & Niedenthal, R. (2004). c-Cbl binds to tyrosine-phosphorylated neurotrophin receptor p75 and induces its ubiquitination. Cell Signal, 16(11), 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  57. Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., Mueller-Dieckmann, C., et al. (1996). Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell, 86(5), 787–798.

    Article  PubMed  CAS  Google Scholar 

  58. Kawai, H., Nie, L., & Yuan, Z. M. (2002). Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Molecular and Cellular Biology, 22(17), 6079–6088.

    Article  PubMed  CAS  Google Scholar 

  59. Fan, C., Yang, J., & Engelhardt, J. F. (2002). Temporal pattern of NFkappaB activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science, 115(24), 4843–4853.

    Article  PubMed  CAS  Google Scholar 

  60. Foehr, E. D., Lorente, G., Vincent, V., Nikolich, K., & Urfer, R. (2005). FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. Journal of Neurooncology, 74(3), 241–248.

    Article  CAS  Google Scholar 

  61. Hogan, A., Yakubchyk, Y., Chabot, J., Obagi, C., Daher, E., Maekawa, K., et al. (2004). The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. Journal of Biological Chemistry, 279(51), 53717–53724.

    Article  PubMed  CAS  Google Scholar 

  62. Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews. Molecular and Cellular Biology, 3(7), 475–486.

    Article  CAS  Google Scholar 

  63. Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular Cell, 9(4), 725–737.

    Article  PubMed  CAS  Google Scholar 

  64. Myagmar, B. E., Umikawa, M., Asato, T., Taira, K., Oshiro, M., Hino, A., et al. (2005). PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochemical and Biophysical Research Communications, 329(3), 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  65. Lai, Y. J., Lin, W. C., & Lin, F. T. (2007). PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. Journal of Biological Chemistry, 282(33), 24381–24387.

    Article  PubMed  CAS  Google Scholar 

  66. Miyazaki, T., Atarashi, Y., Yasumura, S., Minatoya, I., Ogawa, K., Iwamoto, M., et al. (2006). Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: novel function of FAP-1. Journal of Gastroenterology and Hepatology, 21(1 Pt 1), 84–91.

    Article  PubMed  CAS  Google Scholar 

  67. Tillman, D. M., Harwood, F. G., Gibson, A. A., & Houghton, J. A. (1998). Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells. Cell Death Differentiation, 5(5), 450–457.

    Article  CAS  Google Scholar 

  68. Ying, J., Li, H., Cui, Y., Wong, A. H., Langford, C., & Tao, Q. (2006). Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia, 20(6), 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  69. Yeh, S. H., Wu, D. C., Tsai, C. Y., Kuo, T. J., Yu, W. C., Chang, Y. S., et al. (2006). Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clinical Cancer Research, 12(4), 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  70. Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304(5674), 1164–1166.

    Article  PubMed  CAS  Google Scholar 

  71. Freiss, G., Puech, C., & Vignon, F. (1998). Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Molecular Endocrinology, 12(4), 568–579.

    Article  PubMed  CAS  Google Scholar 

  72. Bompard, G., Puech, C., Prebois, C., Vignon, F., & Freiss, G. (2002). Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. Journal of Biological Chemistry, 277(49), 47861–47869.

    Article  PubMed  CAS  Google Scholar 

  73. Cuppen, E., Nagata, S., Wieringa, B., & Hendriks, W. (1997). No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. Journal of Biological Chemistry, 272(48), 30215–30220.

    Article  PubMed  CAS  Google Scholar 

  74. Stuible, M., Zhao, L., Aubry, I., Schmidt-Arras, D., Bohmer, F. D., Li, C. J., et al. (2007). Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Chembiochem, 8(2), 179–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Toretsky Lab members for helpful discussions and Ms. Audrey Kubetin for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Toretsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaan, O.D., Toretsky, J.A. PTPL1: a large phosphatase with a split personality. Cancer Metastasis Rev 27, 205–214 (2008). https://doi.org/10.1007/s10555-008-9114-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9114-2

Keywords

Navigation