Skip to main content

Advertisement

Log in

Functional and therapeutic significance of Akt deregulation in malignant melanoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Identification of specific genes or signaling pathways involved in development of melanoma could lead to new therapies that target and correct these defects. Recent studies have revealed deregulation of the Akt signaling pathway occuring in 43–67% of melanomas. Akt kinase family members, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, share extensive structural similarity and perform common as well as unique functions within cells. The Akt signaling cascade initiates at the cell surface when growth factors or other extracellular stimuli activate phosphoinositide 3-kinase (PI3K). Activated PI3K generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PIP3), causing translocation of Akt to the plasma membrane where it becomes phosphorylated and activated. The balance of cellular PIP3 is regulated primarily by a phosphatase called PTEN that reduces PIP3 levels thereby lowering Akt activity. In melanomas, decreased PTEN activity elevates PIP3 levels resulting in Akt activation. Active Akt then phosphorylates downstream cellular proteins that promote melanoma cell proliferation and survival. Recently, Akt3 was discovered to be the predominant isoform activated in sporadic melanomas. Levels of activity increased during melanoma progression with metastatic melanomas having the highest activity. Although mechanisms of Akt3 activation remain to be fully characterized, overexpression of Akt3 and decreased PTEN activity play important roles in this process. Targeted reduction of Akt3 activity decreased survival of melanoma tumor cells leading to inhibition of tumor development, which may be therapeutically effective for shrinking tumors in melanoma patients. This review surveys recent developments in Akt deregulation in melanoma and its potential as a selective therapeutic target in patients in the advanced stages of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollock PM, Trent JM: The genetics of cutaneous melanoma. Clin Lab Med 20: 667–690, 2000

    Google Scholar 

  2. Hayward N. New developments in melanoma genetics. Curr Oncol Rep 2: 300–306, 2000

    Google Scholar 

  3. Ortonne JP: Photobiology and genetics of malignant melanoma. Br J Dermatol 146 (Suppl 61): 11–16, 2002

    Google Scholar 

  4. Testa JR, Bellacosa A: AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98: 10983–10985, 2001

    Google Scholar 

  5. Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14: 381–395, 2002

    Google Scholar 

  6. Dhawan P, Singh AB, Ellis DL, Richmond A: Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62: 7335–7342, 2002

    Google Scholar 

  7. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, Kester M, Lakshman S, Robertson GP: Deregulated Akt3 Activity Promotes Development of Malignant Melanoma. Cancer Res 64: 7002–7010, 2004

    Google Scholar 

  8. Scheid MP, Woodgett JR: PKB/AKT: Functional insights from genetic models. Nat Rev Mol Cell Biol 2: 760–768, 2001

    Google Scholar 

  9. Scheid MP, Woodgett JR: Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546: 108–112, 2003

    Google Scholar 

  10. Bellacosa A, Testa JR, Moore R, Larue L: A portrait of AKT kinases: Human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 3: 268–275, 2004

    Google Scholar 

  11. Brazil DP, Yang ZZ, Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29: 233–242, 2004

    Google Scholar 

  12. Brazil DP, Park J, Hemmings BA: PKB binding proteins. Getting in on the Akt. Cell 111: 293–303, 2002

    Google Scholar 

  13. Brazil DP, Hemmings BA: Ten years of protein kinase B signalling: A hard Akt to follow. Trends Biochem Sci 26: 657–664, 2001

    Google Scholar 

  14. Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev 13: 2905–2927, 1999

    Google Scholar 

  15. Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG: Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell 6: 385–394, 2000

    Google Scholar 

  16. Ferguson KM, Kavran JM, Sankaran VG, Fournier E, Isakoff SJ, Skolnik EY, Lemmon MA: Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell 6: 373–384, 2000

    Google Scholar 

  17. Jones PF, Jakubowicz T, Hemmings BA: Molecular cloning of a second form of rac protein kinase. Cell Regul 2: 1001–1009, 1991

    Google Scholar 

  18. Andjelkovic M, Jones PF, Grossniklaus U, Cron P, Schier AF, Dick M, Bilbe G, Hemmings BA: Developmental regulation of expression and activity of multiple forms of the Drosophila RAC protein kinase. J Biol Chem 270: 4066–4075, 1995

    Google Scholar 

  19. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J 15: 6541–6551, 1996

    Google Scholar 

  20. Brodbeck D, Hill MM, Hemmings BA: Two splice variants of protein kinase B gamma have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl-terminal hydrophobic domain. J Biol Chem 276: 29550–29558, 2001

    Google Scholar 

  21. Burgering BM, Coffer PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599–602, 1995

    Google Scholar 

  22. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN: The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81: 727–736, 1995

    Google Scholar 

  23. Vanhaesebroeck B, Alessi DR: The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346(Pt 3): 561–576, 2000

    Google Scholar 

  24. Chan TO, Tsichlis PN: PDK2: A complex tail in one Akt. Sci STKE 2001: PE1, 2001

    Google Scholar 

  25. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S: Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/Akt by the integrin-linked kinase. Proc Natl Acad Sci USA 95: 11211–11216, 1998

    Google Scholar 

  26. Cheng JQ, Altomare DA, Klein MA, Lee WC, Kruh GD, Lissy NA, Testa JR: Transforming activity and mitosis-related expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis. Oncogene 14: 2793–2801, 1997

    Google Scholar 

  27. Mirza AM, Kohn AD, Roth RA, McMahon M: Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 11: 279–292, 2000

    Google Scholar 

  28. Aoki M, Batista O, Bellacosa A, Tsichlis P, Vogt PK: The akt kinase: Molecular determinants of oncogenicity. Proc Natl Acad Sci USA 95: 14950–14955, 1998

    Google Scholar 

  29. Mende I, Malstrom S, Tsichlis PN, Vogt PK, Aoki M: Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 20: 4419–4423, 2001

    Google Scholar 

  30. Ackler S, Ahmad S, Tobias C, Johnson MD, Glazer RI: Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Oncogene 21: 198–206, 2002

    Google Scholar 

  31. Hutchinson J, Jin J, Cardiff RD, Woodgett JR, Muller WJ: Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 21: 2203–2212, 2001

    Google Scholar 

  32. Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature 411: 355–365, 2001

    Google Scholar 

  33. Polsky D, Cordon-Cardo C: Oncogenes in melanoma. Oncogene 22: 3087–3091, 2003

    Google Scholar 

  34. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J: Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467, 1997

    Google Scholar 

  35. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G: Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385: 544–548, 1997

    Google Scholar 

  36. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW: PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99–102, 1999

    Google Scholar 

  37. Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC, Whang-Peng J, Liu JM, Yang DM, Yang WK, Shen CY: PIK3CA as an oncogene in cervical cancer. Oncogene 19: 2739–2744, 2000

    Google Scholar 

  38. Andjelkovic M, Maira SM, Cron P, Parker PJ, Hemmings BA: Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide-dependent protein kinase 1 and Ser473 kinase. Mol Cell Biol 19: 5061–5072, 1999

    Google Scholar 

  39. Tachiiri S, Sasai K, Oya N, Hiraoka M: Enhanced cell killing by overexpression of dominant-negative phosphatidylinositol 3-kinase subunit, Deltap85, following genotoxic stresses. Jpn J Cancer Res 91: 1314–1318, 2000

    Google Scholar 

  40. Jetzt A, Howe JA, Horn MT, Maxwell E, Yin Z, Johnson D, Kumar CC: Adenoviral-mediated expression of a kinase-dead mutant of Akt induces apoptosis selectively in tumor cells and suppresses tumor growth in mice. Cancer Res 63: 6697–6706, 2003

    Google Scholar 

  41. Staal SP: Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: Amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84: 5034–5037, 1987

    Google Scholar 

  42. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR: AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89: 9267–9271, 1992

    Google Scholar 

  43. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR: Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93: 3636–3641, 1996

    Google Scholar 

  44. Lu Y, Li Z, Sun M: Multiple gene alterations involved in the processor of human gastric carcinogenesis. Chung-Hua i Hsueh Tsa Chih [Chinese Medical Journal] 75: 679–682, 1995

    Google Scholar 

  45. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V: Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64: 280–285, 1995

    Google Scholar 

  46. van Dekken H, Geelen E, Dinjens WN, Wijnhoven BP, Tilanus HW, Tanke HJ, Rosenberg C: Comparative genomic hybridization of cancer of the gastroesophageal junction: Deletion of 14Q31-32.1 discriminates between esophageal (Barrett’s) and gastric cardia adenocarcinomas. Cancer Res 59: 748–752, 1999

    Google Scholar 

  47. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, et al: Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64: 280–285, 1995

    Google Scholar 

  48. Thompson FH, Nelson MA, Trent JM, Guan XY, Liu Y, Yang JM, Emerson J, Adair L, Wymer J, Balfour C, Massey K, Weinstein R, Alberts DS, Taetle R: Amplification of 19q13.1-q13.2 sequences in ovarian cancer. G-band, FISH, and molecular studies. Cancer Genet Cytogenet 87: 55–62, 1996

    Google Scholar 

  49. Waldmann V, Wacker J, Deichmann M: Mutations of the activation-associated phosphorylation sites at codons 308 and 473 of protein kinase B are absent in human melanoma. Arch Dermatol Res 293: 368–372, 2001

    Google Scholar 

  50. Waldmann V, Wacker J, Deichmann M: Absence of mutations in the pleckstrin homology (PH) domain of protein kinase B (PKB/Akt) in malignant melanoma. Melanoma Res 12: 45–50, 2002

    Google Scholar 

  51. Thompson FH, Emerson J, Olson S, Weinstein R, Leavitt SA, Leong SP, Emerson S, Trent JM, Nelson MA, Salmon SE, et al: Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes. Cancer Genet Cytogenet 83: 93–104, 1995

    Google Scholar 

  52. Mertens F, Johansson B, Höglund M, Mitelman F: Chromosomal imbalance maps of malignant solid tumors: A cytogenetic survey of 3185 neoplasms. Cancer Res 57: 2765–2780, 1997

    Google Scholar 

  53. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D: Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58: 2170–2175, 1998

    Google Scholar 

  54. Cantley LC, Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96: 4240–4245, 1999

    Google Scholar 

  55. Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA: Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 93: 5699–5704, 1996

    Google Scholar 

  56. Laine J, Kunstle G, Obata T, Sha M, Noguchi M: The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6: 395–407, 2000

    Google Scholar 

  57. Laine J, Kunstle G, Obata T, Noguchi M: Differential regulation of Akt kinase isoforms by the members of the TCL1 oncogene family. J Biol Chem 277: 3743–3751, 2002

    Google Scholar 

  58. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S, Russo G, Tsichlis P, Croce CM: Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 97: 3028–3033, 2000

    Google Scholar 

  59. Sato S, Fujita N, Tsuruo T: Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97: 10832–10837, 2000

    Google Scholar 

  60. Fujita N, Sato S, Ishida A, Tsuruo T: Involvement of Hsp90 in Signaling and Stability of 3-Phosphoinositide- dependent Kinase-1. J Biol Chem 277: 10346–10353, 2002

    Google Scholar 

  61. Wu H, Goel V, Haluska FG: PTEN signaling pathways in melanoma. Oncogene 22: 3113–3122, 2003

    Google Scholar 

  62. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362, 1997

    Google Scholar 

  63. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947, 1997

    Google Scholar 

  64. Li DM, Sun H: TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57: 2124–2129, 1997

    Google Scholar 

  65. Simpson L, Parsons R: PTEN: Life as a tumor suppressor. Exp Cell Res 264: 29–41, 2001

    Google Scholar 

  66. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95: 15587–15591, 1998

    Google Scholar 

  67. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C, Eng C: PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum Mol Genet 8: 185–193, 1999

    Google Scholar 

  68. Cheney IW, Johnson DE, Vaillancourt MT, Avanzini J, Morimoto A, Demers GW, Wills KN, Shabram PW, Bolen JB, Tavtigian SV, Bookstein R: Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res 58: 2331–2334, 1998

    Google Scholar 

  69. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM: PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274: 20693–20703, 1999

    Google Scholar 

  70. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP: Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355, 1998

    Google Scholar 

  71. Boni R, Vortmeyer AO, Burg G, Hofbauer G, Zhuang Z: The PTEN tumour suppressor gene and malignant melanoma. Melanoma Res 8: 300–302, 1998

    Google Scholar 

  72. Celebi JT, Shendrik I, Silvers DN, Peacocke M: Identification of PTEN mutations in metastatic melanoma specimens. J Med Genet 37: 653–657, 2000

    Google Scholar 

  73. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57: 3660–3663, 1997

    Google Scholar 

  74. Robertson GP, Furnari FB, Miele ME, Glendening MJ, Welch DR, Fountain JW, Lugo TG, Huang HJ, Cavenee WK: In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc Natl Acad Sci USA 95: 9418–9423, 1998

    Google Scholar 

  75. Tsao H, Zhang X, Benoit E, Haluska FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 16: 3397–3402, 1998

    Google Scholar 

  76. Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C: Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol 157: 1123–1128, 2000

    Google Scholar 

  77. Birck A, Ahrenkiel V, Zeuthen J, Hou-Jensen K, Guldberg P: Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol 114: 277–280, 2000

    Google Scholar 

  78. Reifenberger J, Wolter M, Bostrom J, Buschges R, Schulte KW, Megahed M, Ruzicka T, Reifenberger G: Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas. Virchows Arch 436: 487–493, 2000

    Google Scholar 

  79. Poetsch M, Dittberner T, Woenckhaus C: PTEN/MMAC1 in malignant melanoma and its importance for tumor progression. Cancer Genet Cytogenet 125: 21–26, 2001

    Google Scholar 

  80. Tsao H, Zhang X, Fowlkes K, Haluska FG: Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 60: 1800–1804, 2000

    Google Scholar 

  81. Saida T: Recent advances in melanoma research. J Dermatol Sci 26: 1–13, 2001

    Google Scholar 

  82. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG: Direct identification of PTEN phosphorylation sites. FEBS Lett 528: 145–153, 2002

    Google Scholar 

  83. Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP: Loss of PTEN Promotes Tumor Development in Malignant Melanoma. Cancer Res 63: 2891–2897, 2003

    Google Scholar 

  84. Robertson GP, Herbst RA, Nagane M, Huang HJ, Cavenee WK: The chromosome 10 monosomy common in human melanomas results from loss of two separate tumor suppressor loci. Cancer Res 59: 3596–3601, 1999

    Google Scholar 

  85. Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R: The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res 58: 5667–5672, 1998

    Google Scholar 

  86. Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R, Koul D, Bookstein R, Stokoe D, Yung WK, Mills GB, Steck PA: Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 58: 5285–5290, 1998

    Google Scholar 

  87. Morimoto AM, Tomlinson MG, Nakatani K, Bolen JB, Roth RA, Herbst R: The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase activity. Oncogene 19: 200–209, 2000

    Google Scholar 

  88. Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA, Eng C: PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 59: 5808–5814, 1999

    Google Scholar 

  89. Lu Y, Lin YZ, LaPushin R, Cuevas B, Fang X, Yu SX, Davies MA, Khan H, Furui T, Mao M, Zinner R, Hung MC, Steck P, Siminovitch K, Mills GB: The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18: 7034–7045, 1999

    Google Scholar 

  90. Stewart AL, Mhashilkar AM, Yang XH, Ekmekcioglu S, Saito Y, Sieger K, Schrock R, Onishi E, Swanson X, Mumm JB, Zumstein L, Watson GJ, Snary D, Roth JA, Grimm EA, Ramesh R, Chada S: PI3 kinase blockade by Ad-PTEN inhibits invasion and induces apoptosis in RGP and metastatic melanoma cells. Mol Med 8: 451–461, 2002

    Google Scholar 

  91. Parmiter AH, Balaban G, Clark WH, Jr: Nowell PC. Possible involvement of the chromosome region 10q24—-q26 in early stages of melanocytic neoplasia. Cancer Genet Cytogenet 30: 313–317, 1988

    Google Scholar 

  92. Larribere L, Khaled M, Tartare-Deckert S, Busca R, Luciano F, Bille K, Valony G, Eychene A, Auberger P, Ortonne JP, Ballotti R, Bertolotto C: PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ, 2004

  93. Powell DJ, Hajduch E, Kular G, Hundal HS: Ceramide Disables 3-Phosphoinoside Binding to the Pleckstrin Homology Domain of Protein Kinase B (PKB)/Akt by a PKCzeta-Dependent Mechanism. Mol Cell Biol 23: 7794–7808, 2003

    Google Scholar 

  94. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA: Role of translocation in the activation and function of protein kinase B. J Biol Chem 272: 31515–31524, 1997

    Google Scholar 

  95. Meier R, Alessi DR, Cron P, Andjelkovic M, Hemmings BA: Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 272: 30491–30497, 1997

    Google Scholar 

  96. Dufner A, Andjelkovic M, Burgering BM, Hemmings BA, Thomas G: Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol 19: 4525–4534, 1999

    Google Scholar 

  97. Filippa N, Sable CL, Hemmings BA, Van Obberghen E: Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation. Mol Cell Biol 20: 5712–5721, 2000

    Google Scholar 

  98. Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM: Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett 477: 27–32, 2000

    Google Scholar 

  99. Obata T, Yaffe MB, Leparc GG, Piro ET, Maegawa H, Kashiwagi A, Kikkawa R, Cantley LC: Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 275: 36108–36115, 2000

    Google Scholar 

  100. Li G, Satyamoorthy K, Herlyn M: N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 61: 3819–3825, 2001

    Google Scholar 

  101. Kang SS, Kwon T, Kwon DY, Do SI: Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274: 13085–13090, 1999

    Google Scholar 

  102. Kwon T, Kwon DY, Chun J, Kim JH, Kang SS: Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 275: 423–428, 2000

    Google Scholar 

  103. Li G, Kalabis J, Xu X, Meier F, Oka M, Bogenrieder T, Herlyn M: Reciprocal regulation of MelCAM and AKT in human melanoma. Oncogene 22: 6891–6899, 2003

    Google Scholar 

  104. Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164, 2002

    Google Scholar 

  105. Soengas MS, Lowe SW: Apoptosis and melanoma chemoresistance. Oncogene 22: 3138–3151, 2003

    Google Scholar 

  106. Bedogni B, O’Neill MS, Welford SM, Bouley DM, Giaccia AJ, Denko NC, Powell MB: Topical treatment with inhibitors of the phosphatidylinositol 3’-kinase/Akt and Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways reduces melanoma development in severe combined immunodeficient mice. Cancer Res 64: 2552–2560, 2004

    Google Scholar 

  107. Ivanov VN, Hei TK: Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 279: 22747–22758, 2004

    Google Scholar 

  108. Richmond A, Fan GH, Dhawan P, Yang J: How do chemokine/chemokine receptor activations affect tumorigenesis? Novartis Found Symp 256: 74–89; discussion 89–91, 106–111, 266–109, 2004

    Google Scholar 

  109. Fishman P, Bar-Yehuda S, Madi L, Cohn I: A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs 13: 437–443, 2002

    Google Scholar 

  110. Fishman P, Madi L, Bar-Yehuda S, Barer F, Del Valle L, Khalili K: Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21: 4060–4064, 2002

    Google Scholar 

  111. Smalley KS, Eisen TG: Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int J Cancer 105: 165–175, 2003

    Google Scholar 

  112. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M: Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res 61: 7318–7324, 2001

    Google Scholar 

  113. Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S: Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol Cell Biol 24: 5565–5576, 2004

    Google Scholar 

  114. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB: Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275: 27354–27359, 2000

    Google Scholar 

  115. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature 417: 949–954, 2002

    Google Scholar 

  116. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, Weber BL: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62: 6997–7000, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin P. Robertson.

Additional information

Supported by The Foreman Foundation for Melanoma Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, G.P. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev 24, 273–285 (2005). https://doi.org/10.1007/s10555-005-1577-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-1577-9

Key words

Navigation