Skip to main content

Advertisement

Log in

Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

X-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K d > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, Barsky SH, Woodward WA, Buchholz T, Lucci A, Ueno N, Cristofanilli M (2010) Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 60:351–375. doi:10.3322/caac.20082

    Article  PubMed  Google Scholar 

  2. Aird KM, Allensworth JL, Batinic-Haberle I, Lyerly HK, Dewhirst MW, Devi GR (2012) ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat 132:109–119. doi:10.1007/s10549-011-1568-1

    Article  PubMed  CAS  Google Scholar 

  3. Aird KM, Ding X, Baras A, Wei J, Morse MA, Clay T, Lyerly HK, Devi GR (2008) Trastuzumab signaling in ErbB2-overexpressing inflammatory breast cancer correlates with X-linked inhibitor of apoptosis protein expression. Mol Cancer Ther 7:38–47. doi:10.1158/1535-7163.MCT-07-0370

    Article  PubMed  CAS  Google Scholar 

  4. Aird KM, Ghanayem RB, Peplinski S, Lyerly HK, Devi GR (2010) X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol Cancer Ther 9:1432–1442. doi:10.1158/1535-7163.MCT-10-0160

    Article  PubMed  CAS  Google Scholar 

  5. Allensworth JL, Aird KM, Aldrich AJ, Batinic-Haberle I, Devi GR (2012) XIAP inhibition and generation of reactive oxygen species enhances trail sensitivity in inflammatory breast cancer cells. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-11-0787

  6. Anderson WF, Chu KC, Chang S (2003) Inflammatory breast carcinoma and noninflammatory locally advanced breast carcinoma: distinct clinicopathologic entities? J Clin Oncol 21:2254–2259

    Article  PubMed  Google Scholar 

  7. Nguyen DM, Sam K, Tsimelzon A, Li X, Wong H, Mohsin S, Clark GM, Hilsenbeck SG, Elledge RM, Allred DC, O’Connell P, Chang JC (2006) Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin Cancer Res 12:5047–5054. doi:10.1158/1078-0432.CCR-05-2248

    Article  PubMed  CAS  Google Scholar 

  8. Silvera D, Arju R, Darvishian F, Levine PH, Zolfaghari L, Goldberg J, Hochman T, Formenti SC, Schneider RJ (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908. doi:10.1038/ncb1900

    Article  PubMed  CAS  Google Scholar 

  9. Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, Krishnamurthy S, Valero V, Hortobagyi GN, Robertson F, Symmans WF, Pusztai L, Ueno NT (2011) Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat 125:785–795. doi:10.1007/s10549-010-1280-6

    Article  PubMed  CAS  Google Scholar 

  10. Van Laere S, Van der Auwera I, Van den Eynden G, Van Hummelen P, van Dam P, Van Marck E, Vermeulen PB, Dirix L (2007) Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer 97:1165–1174. doi:10.1038/sj.bjc.6603967

    Article  PubMed  Google Scholar 

  11. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, Camerlo J, Tagett R, Tarpin C, Houvenaeghel G, Nguyen C, Maraninchi D, Jacquemier J, Houlgatte R, Birnbaum D, Viens P (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 64:8558–8565. doi:10.1158/0008-5472.CAN-04-2696

    Article  PubMed  CAS  Google Scholar 

  12. Chen FL, Xia W, Spector NL (2008) Acquired resistance to small molecule ErbB2 tyrosine kinase inhibitors. Clin Cancer Res 14:6730–6734. doi:10.1158/1078-0432.CCR-08-0581

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Liu Y, Ji R, Gu Q, Zhao X, Liu Y, Sun B (2010) Prognostic value of the X-linked inhibitor of apoptosis protein for invasive ductal breast cancer with triple-negative phenotype. Hum Pathol 41:1186–1195. doi:10.1016/j.humpath.2010.01.013

    Article  PubMed  CAS  Google Scholar 

  14. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580. doi:10.1038/sj.onc.1207101

    Article  PubMed  CAS  Google Scholar 

  15. Amantana A, London CA, Iversen PL, Devi GR (2004) X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3:699–707

    PubMed  CAS  Google Scholar 

  16. Jaffer S, Orta L, Sunkara S, Sabo E, Burstein DE (2007) Immunohistochemical detection of antiapoptotic protein X-linked inhibitor of apoptosis in mammary carcinoma. Hum Pathol 38:864–870. doi:10.1016/j.humpath.2006.11.016

    Article  PubMed  CAS  Google Scholar 

  17. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259

    Article  PubMed  Google Scholar 

  18. Nachmias B, Ashhab Y, Ben-Yehuda D (2004) The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 14:231–243. doi:10.1016/j.semcancer.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  19. Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13:179–188

    Article  PubMed  CAS  Google Scholar 

  20. Kashkar H (2010) X-linked inhibitor of apoptosis: a chemoresistance factor or a hollow promise. Clin Cancer Res 16:4496–4502. doi:10.1158/1078-0432.CCR-10-1664

    Article  PubMed  CAS  Google Scholar 

  21. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Net Rev Drug Discov 11:109–124. doi:10.1038/nrd3627

    Article  CAS  Google Scholar 

  22. Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, Prehn JH, Rehm M (2010) XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis 1:e49. doi:10.1038/cddis.2010.26

    Article  PubMed  CAS  Google Scholar 

  23. Pluta P, Cebula-Obrzut B, Ehemann V, Pluta A, Wierzbowska A, Piekarski J, Bilski A, Nejc D, Kordek R, Robak T, Smolewski P, Jeziorski A (2011) Correlation of Smac/DIABLO protein expression with the clinico-pathological features of breast cancer patients. Neoplasma 58:430–435

    Article  PubMed  CAS  Google Scholar 

  24. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700. doi:10.1016/j.molcel.2008.05.014

    Article  PubMed  CAS  Google Scholar 

  25. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 68:9384–9393. doi:10.1158/0008-5472.CAN-08-2655

    Article  PubMed  CAS  Google Scholar 

  26. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456. doi:10.1016/j.ccr.2007.08.029

    Article  PubMed  CAS  Google Scholar 

  27. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681. doi:10.1016/j.cell.2007.10.030

    Article  PubMed  CAS  Google Scholar 

  28. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693. doi:10.1016/j.cell.2007.10.037

    Article  PubMed  CAS  Google Scholar 

  29. Condon SM (2011) The discovery and development of Smac mimetics—small-molecule antagonists of the inhibitor of apoptosis proteins, Chap 13. In: John EM (ed) Annual reports in medicinal chemistry. Academic Press, New York, pp 211–226

    Google Scholar 

  30. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277:44236–44243. doi:10.1074/jbc.M207578200

    Article  PubMed  CAS  Google Scholar 

  31. Emeagi PU, Van Lint S, Goyvaerts C, Maenhout S, Cauwels A, McNeish IA, Bos T, Heirman C, Thielemans K, Aerts JL, Breckpot K (2012) Proinflammatory characteristics of SMAC/DIABLO-induced cell death in antitumor therapy. Cancer Res 72:1342–1352. doi:10.1158/0008-5472.CAN-11-2400

    Article  PubMed  CAS  Google Scholar 

  32. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815. doi:10.1038/nm735

    PubMed  CAS  Google Scholar 

  33. Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, O’Bryan E, Fumero C, Wang HG, Bhalla K (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99:3419–3426

    Article  PubMed  CAS  Google Scholar 

  34. Hu S, Yang X (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278:10055–10060. doi:10.1074/jbc.M207197200

    Article  PubMed  CAS  Google Scholar 

  35. Wagner L, Marschall V, Karl S, Cristofanon S, Zobel K, Deshayes K, Vucic D, Debatin KM, Fulda S (2012) Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-kappaB-dependent manner. Oncogene. doi:10.1038/onc.2012.108

  36. Wu H, Tschopp J, Lin SC (2007) Smac mimetics and TNFalpha: a dangerous liaison? Cell 131:655–658. doi:10.1016/j.cell.2007.10.042

    Article  PubMed  CAS  Google Scholar 

  37. Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 100:183–188. doi:10.1073/pnas.232688199

    Article  PubMed  CAS  Google Scholar 

  38. Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, Lippman ME, Yang D, Wang S (2004) Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 47:2430–2440

    Article  PubMed  CAS  Google Scholar 

  39. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  40. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97:1754–1759. doi:10.1073/pnas.030545097

    Article  PubMed  CAS  Google Scholar 

  41. Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113:217–230

    Article  PubMed  Google Scholar 

  42. Braeuer SJ, Buneker C, Mohr A, Zwacka RM (2006) Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Mol Cancer Res 4:715–728. doi:10.1158/1541-7786.MCR-05-0231

    Article  PubMed  CAS  Google Scholar 

  43. Cummins JM, Kohli M, Rago C, Kinzler KW, Vogelstein B, Bunz F (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64:3006–3008

    Article  PubMed  CAS  Google Scholar 

  44. Shin SI, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72:4435–4439

    Article  PubMed  CAS  Google Scholar 

  45. Debeb BG, Cohen EN, Boley K, Freiter EM, Li L, Robertson FM, Reuben JM, Cristofanilli M, Buchholz TA, Woodward WA (2012) Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat 134:495–510. doi:10.1007/s10549-012-2075-8

    Article  PubMed  CAS  Google Scholar 

  46. Jinesh GG, Chunduru S, Kamat AM (2012) Smac mimetic enables the anticancer action of BCG-stimulated neutrophils through TNF-alpha but not through TRAIL and FasL. J Leukoc Biol 92:233–244. doi:10.1189/jlb.1211623

    Article  Google Scholar 

  47. Cifone MA, Fidler IJ (1980) Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77:1039–1043

    Article  PubMed  CAS  Google Scholar 

  48. Bai L, Chen W, Wang X, Ju W, Xu S, Lin Y (2009) Attenuating Smac mimetic compound 3-induced NF-kappaB activation by luteolin leads to synergistic cytotoxicity in cancer cells. J Cell Biochem 108:1125–1131. doi:10.1002/jcb.22346

    Article  PubMed  CAS  Google Scholar 

  49. Moujalled DM, Cook WD, Lluis JM, Khan NR, Ahmed AU, Callus BA, Vaux DL (2012) In mouse embryonic fibroblasts, neither caspase-8 nor cellular FLICE-inhibitory protein (FLIP) is necessary for TNF to activate NF-kappaB, but caspase-8 is required for TNF to cause cell death, and induction of FLIP by NF-kappaB is required to prevent it. Cell Death Differ 19:808–815. doi:10.1038/cdd.2011.151

    Article  PubMed  CAS  Google Scholar 

  50. Stadel D, Cristofanon S, Abhari BA, Deshayes K, Zobel K, Vucic D, Debatin KM, Fulda S (2011) Requirement of nuclear factor kappaB for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. Neoplasia 13:1162–1170

    PubMed  CAS  Google Scholar 

  51. Eschenburg G, Eggert A, Schramm A, Lode HN, Hundsdoerfer P (2012) Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-alpha-independent apoptosis. Cancer Res 72:2645–2656. doi:10.1158/0008-5472.CAN-11-4072

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Amy Aldrich, Jess Hendin, and Katherine Aird for technical support. Grant support was received from American Cancer Society-RSG-08-290-01-CCE (GRD) and Duke University Chancellor’s Scholarship (JLA).

Conflict of interest

GRD has previously received a philanthropic gift for breast cancer research from TetraLogic Pharmaceuticals.

Ethical standards

This manuscript complies with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri R. Devi.

Additional information

Jennifer L. Allensworth and Scott J. Sauer contributed equally and share co-first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allensworth, J.L., Sauer, S.J., Lyerly, H.K. et al. Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism. Breast Cancer Res Treat 137, 359–371 (2013). https://doi.org/10.1007/s10549-012-2352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2352-6

Keywords

Navigation