Skip to main content

Advertisement

Log in

Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Limiting tumor invasion to the surrounding healthy tissues has proven to be clinically relevant for anticancer treatment options. We have demonstrated that, within a solid tumor, it is possible to achieve such a goal with the same nanoparticle by intracellular and triggered targeted drug delivery to more than one cell population. We have identified the nucleolin receptor in endothelial and cancer cells in tissue samples from breast cancer patients, which enabled the design of a F3-peptide-targeted sterically stabilized pH-sensitive liposome. The clinical potential of such strategy was demonstrated by the successful specific cellular association by breast cancer cells harvested from tumors of patients submitted to mastectomy. In vitro, the nanoparticle targeted the nucleolin receptor on a cell and ligand-specific manner and improved cytotoxicity of doxorubicin (used as a model drug) towards breast cancer and endothelial cells by 177- and 162-fold, respectively, relative to the commercially available non-targeted non-pH-sensitive liposomes. Moreover, active accumulation of F3-targeted pH-sensitive liposomes into human orthotopic tumors, implanted in the mammary fat pad of nude mice, was registered for a time point as short as 4 h, reaching 48% of the injected dose/g of tissue. Twenty-four hours post-injection the accumulation of the dual-targeted pH-sensitive nanoparticle in the tumor tissue was 33-fold higher than the non-targeted non-pH-sensitive counterpart. In mice treated with the developed targeted nanoparticle significant decrease of the tumor viable rim area and microvascular density, as well as limited invasion to surrounding healthy tissues were observed (as opposed to other tested controls), which may increase the probability of tumors falling in the category of “negative margins” with reduced risk of relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2009) Fact sheet N°297

  2. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280

    Article  PubMed  CAS  Google Scholar 

  3. Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7–H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075

    Article  PubMed  CAS  Google Scholar 

  4. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE (2010) Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5(3):e9832

    Article  PubMed  Google Scholar 

  5. Chetty C, Lakka SS, Bhoopathi P, Rao JS (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3 K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081–1095

    Article  PubMed  CAS  Google Scholar 

  6. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  PubMed  CAS  Google Scholar 

  8. Feron O (2004) Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol Sci 25(10):536–542

    Article  PubMed  CAS  Google Scholar 

  9. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  PubMed  CAS  Google Scholar 

  10. Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922

    PubMed  CAS  Google Scholar 

  11. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC, Clement B, Zain M, Olson MO, Jucker M, Burrous BA (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290(2):320–325

    Article  PubMed  CAS  Google Scholar 

  12. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163(4):871–878

    Article  PubMed  CAS  Google Scholar 

  13. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56(7):947–965

    Article  PubMed  CAS  Google Scholar 

  14. Slepushkin VA, Simoes S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, Duzgunes N (1997) Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 272(4):2382–2388

    Article  PubMed  CAS  Google Scholar 

  15. Ranson MR, Carmichael J, O’Byrne K, Stewart S, Smith D, Howell A (1997) Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15(10):3185–3191

    PubMed  CAS  Google Scholar 

  16. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99(11):7444–7449

    Article  PubMed  CAS  Google Scholar 

  17. Marchio S, Lahdenranta J, Schlingemann RO, Valdembri D, Wesseling P, Arap MA, Hajitou A, Ozawa MG, Trepel M, Giordano RJ, Nanus DM, Dijkman HB, Oosterwijk E, Sidman RL, Cooper MD, Bussolino F, Pasqualini R, Arap W (2004) Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5(2):151–162

    Article  PubMed  CAS  Google Scholar 

  18. Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107(9):3564–3571

    Article  PubMed  CAS  Google Scholar 

  19. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992

    PubMed  CAS  Google Scholar 

  20. Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915

    Article  PubMed  CAS  Google Scholar 

  21. Chen MH, Yip GW, Tse GM, Moriya T, Lui PC, Zin ML, Bay BH, Tan PH (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21(10):1183–1191

    Article  PubMed  CAS  Google Scholar 

  22. Hardee ME, Eapen RJ, Rabbani ZN, Dreher MR, Marks J, Blackwell KL, Dewhirst MW (2009) Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors. Cancer Chemother Pharmacol 63(2):219–228

    Article  PubMed  CAS  Google Scholar 

  23. Ruoslahti E (2002) Drug targeting to specific vascular sites. Drug Discov Today 7(22):1138–1143

    Article  PubMed  CAS  Google Scholar 

  24. Fonseca C, Moreira JN, Ciudad CJ, Pedroso de Lima MC, Simoes S (2005) Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366

    Article  PubMed  CAS  Google Scholar 

  25. Ishida T, Kirchmeier MJ, Moase EH, Zalipsky S, Allen TM (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 1515(2):144–158

    Article  PubMed  CAS  Google Scholar 

  26. Baselga J, Mendelsohn J (1994) The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res Treat 29(1):127–138

    Article  PubMed  CAS  Google Scholar 

  27. Bowers G, Reardon D, Hewitt T, Dent P, Mikkelsen RB, Valerie K, Lammering G, Amir C, Schmidt-Ullrich RK (2001) The relative role of ErbB1–4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20(11):1388–1397

    Article  PubMed  CAS  Google Scholar 

  28. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, Salanti G, Richter T, Knudsen B, Vande Woude GF, Harbeck N (2005) C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 113(4):678–682

    Article  PubMed  CAS  Google Scholar 

  29. Moreira JN, Hansen CB, Gaspar R, Allen TM (2001) A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer. Biochim Biophys Acta 1514(2):303–317

    Article  PubMed  CAS  Google Scholar 

  30. Moreira JN, Gaspar R, Allen TM (2001) Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta 1515(2):167–176

    Article  PubMed  CAS  Google Scholar 

  31. Ishida T, Okada Y, Kobayashi T, Kiwada H (2006) Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm 309(1–2):94–100

    Article  PubMed  CAS  Google Scholar 

  32. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435

    Article  PubMed  CAS  Google Scholar 

  33. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6):423–436

    Article  PubMed  CAS  Google Scholar 

  34. Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ, Kerbel RS (2009) Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 8(10):2872–2881

    Article  PubMed  CAS  Google Scholar 

  35. Anscher MS, Jones P, Prosnitz LR, Blackstock W, Hebert M, Reddick R, Tucker A, Dodge R, Leight G Jr, Iglehart JD et al (1993) Local failure and margin status in early-stage breast carcinoma treated with conservation surgery and radiation therapy. Ann Surg 218(1):22–28

    Article  PubMed  CAS  Google Scholar 

  36. Meric F, Mirza NQ, Vlastos G, Buchholz TA, Kuerer HM, Babiera GV, Singletary SE, Ross MI, Ames FC, Feig BW, Krishnamurthy S, Perkins GH, McNeese MD, Strom EA, Valero V, Hunt KK (2003) Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer 97(4):926–933

    Article  PubMed  Google Scholar 

  37. Panet-Raymond V, Truong PT, Alexander C, Lesperance M, McDonald RE, Watson PH (2011) Clinicopathologic factors of the recurrent tumor predict outcome in patients with ipsilateral breast tumor recurrence. Cancer 117(10):2035–2043

    Article  PubMed  Google Scholar 

  38. Daleke DL, Hong K, Papahadjopoulos D (1990) Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta 1024(2):352–366

    Article  PubMed  CAS  Google Scholar 

  39. CR BolotinEM, Bar LK, Emanuel SN, Lasic DD, Barenholz Y (1994) Ammonium sulphate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res 4:455–479

    Article  Google Scholar 

  40. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234(3):466–468

    PubMed  CAS  Google Scholar 

  41. Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta-estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281

    Article  PubMed  CAS  Google Scholar 

  42. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  43. Soares R, Guerreiro S, Botelho M (2007) Elucidating progesterone effects in breast cancer: cross talk with PDGF signaling pathway in smooth muscle cell. J Cell Biochem 100(1):174–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Vera Moura was the recipient of a fellowship from the Portuguese Foundation for Science and Technology (FCT) (ref.: SFRH/BD/21648/2005). The work was supported by a Portuguese grant from FCT, “Programa Operacional Ciência, Tecnologia, Inovação” (POCTI) and “Fundo Europeu de Desenvolvimento Regional” (FEDER) (ref.: POCI/SAU-OBS/57831/2004) and Portugal–Spain capacitation program in nanoscience and nanotechnology (ref.: NANO/NMed-AT/0042/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João N. Moreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, V., Lacerda, M., Figueiredo, P. et al. Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Res Treat 133, 61–73 (2012). https://doi.org/10.1007/s10549-011-1688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1688-7

Keywords

Navigation