Skip to main content

Advertisement

Log in

Patho-biological aspects of basal-like breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer comprises a remarkably diverse group of diseases in terms of presentation, morphology, molecular profile and response to therapy. Recent gene expression profiling of breast cancer has identified specific molecular subtypes of clinical significance. Basal-like cancers (BLC) comprise a group of tumours that are characterised by an expression signature similar to that of the basal/myoepithelial cells of the breast and cluster together with BRCA1 associated tumours. Although BLC has fascinated oncologists and scientists alike due to its enigmatic clinical and pathological parameters, there is no consensus about the definition and method of identification in routine practice of this rather heterogeneous group of cancers. Furthermore, the prognostic significance of BLCs and response to specific chemotherapy regimens are still a matter debate. In this review, we discuss the molecular and morphological features, prognostic significance of BLC, and explore its impact on the concept of the breast cancer stem cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beckmann MW et al (1997) Multistep carcinogenesis of breast cancer and tumour heterogeneity. J Mol Med 75(6):429–439

    PubMed  CAS  Google Scholar 

  2. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    PubMed  CAS  Google Scholar 

  3. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    PubMed  CAS  Google Scholar 

  4. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    PubMed  CAS  Google Scholar 

  5. Bertucci F et al (2000) Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum Mol Genet 9(20):2981–2991

    PubMed  CAS  Google Scholar 

  6. Bergamaschi A et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033–1040

    PubMed  CAS  Google Scholar 

  7. Chin K et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    PubMed  CAS  Google Scholar 

  8. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    PubMed  CAS  Google Scholar 

  9. Zhao H et al (2004) Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15(6):2523–2536

    PubMed  CAS  Google Scholar 

  10. Sotiriou C et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  PubMed  CAS  Google Scholar 

  11. Sotiriou C et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398

    PubMed  CAS  Google Scholar 

  12. Dairkee SH et al (1987) Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat 10(1):11–20

    PubMed  CAS  Google Scholar 

  13. Santini D et al (1996) Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J Pathol 179(4):386–391

    PubMed  CAS  Google Scholar 

  14. Savage K et al (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13(1):90–101

    PubMed  CAS  Google Scholar 

  15. Yehiely F et al (2006) Deconstructing the molecular portrait of basal-like breast cancer. Trends Mol Med 12(11):537–544

    PubMed  CAS  Google Scholar 

  16. Hu Z et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    PubMed  Google Scholar 

  17. Wilhelmsen K, Litjens SH, Sonnenberg A (2006) Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis. Mol Cell Biol 26(8):2877–2886

    PubMed  CAS  Google Scholar 

  18. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    PubMed  CAS  Google Scholar 

  19. Koshikawa N et al (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148(3):615–624

    PubMed  CAS  Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    PubMed  CAS  Google Scholar 

  21. Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3(6):531–536

    PubMed  CAS  Google Scholar 

  22. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275(50):38949–38952

    PubMed  CAS  Google Scholar 

  23. Fan C et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355(6):560–569

    PubMed  CAS  Google Scholar 

  24. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    PubMed  CAS  Google Scholar 

  25. van de Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    PubMed  Google Scholar 

  26. Chang HY et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102(10):3738–3743

    PubMed  CAS  Google Scholar 

  27. Ma XJ et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616

    PubMed  CAS  Google Scholar 

  28. Dai H et al (2005) A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res 65(10):4059–4066

    PubMed  CAS  Google Scholar 

  29. Ivshina AV et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66(21):10292–10301

    PubMed  CAS  Google Scholar 

  30. Stingl J et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    PubMed  CAS  Google Scholar 

  31. Nielsen TO et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374

    PubMed  CAS  Google Scholar 

  32. Harris LN et al (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 13(4):1198–1207

    PubMed  CAS  Google Scholar 

  33. Jumppanen M et al (2007) Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res 9(1):R16

    PubMed  Google Scholar 

  34. Laakso M et al (2006) Basoluminal carcinoma: a new biologically and prognostically distinct entity between basal and luminal breast cancer. Clin Cancer Res 12(14 Pt 1):4185–4191

    PubMed  CAS  Google Scholar 

  35. Rodriguez-Pinilla SM et al (2007) Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas. J Clin Pathol 60(9):1006–1012

    PubMed  Google Scholar 

  36. Carey LA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295(21):2492–2502

    PubMed  CAS  Google Scholar 

  37. Livasy CA et al (2007) Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol 38(2):197–204

    PubMed  CAS  Google Scholar 

  38. Rodriguez-Pinilla SM et al (2007) Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 20(4):474–481

    PubMed  CAS  Google Scholar 

  39. Rodriguez-Pinilla SM et al (2007) Sporadic invasive breast carcinomas with medullary features display a basal-like phenotype: an immunohistochemical and gene amplification study. Am J Surg Pathol 31(4):501–508

    PubMed  Google Scholar 

  40. Pinilla SM et al (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99(1):85–90

    PubMed  CAS  Google Scholar 

  41. Matos I et al (2005) p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch 447(4):688–694

    PubMed  CAS  Google Scholar 

  42. Paredes J et al (2007) P-cadherin and cytokeratin 5: useful adjunct markers to distinguish basal-like ductal carcinomas in situ. Virchows Arch 450(1):73–80

    PubMed  CAS  Google Scholar 

  43. Carey LA et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334

    PubMed  CAS  Google Scholar 

  44. Livasy CA et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271

    PubMed  CAS  Google Scholar 

  45. Kim MJ et al (2006) Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum Pathol 37(9):1217–1226

    PubMed  CAS  Google Scholar 

  46. Laakso M et al (2005) Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18(10):1321–1328

    PubMed  CAS  Google Scholar 

  47. Li H et al (2007) Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res 67(2):501–510

    PubMed  CAS  Google Scholar 

  48. Lakhani SR et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11(14):5175–5180

    PubMed  CAS  Google Scholar 

  49. Foulkes WD et al (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64(3):830–835

    PubMed  CAS  Google Scholar 

  50. Banerjee S et al (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59:729–735

    PubMed  CAS  Google Scholar 

  51. Fulford LG et al (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9(1):R4

    PubMed  Google Scholar 

  52. Jones C et al (2004) Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res 10(18):5988–5997

    PubMed  CAS  Google Scholar 

  53. Potemski P et al (2005) Prognostic relevance of basal cytokeratin expression in operable breast cancer. Oncology 69(6):478–485

    PubMed  Google Scholar 

  54. Malzahn K et al (1998) Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch 433(2):119–129

    PubMed  CAS  Google Scholar 

  55. Gusterson BA et al (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7:143–148

    PubMed  CAS  Google Scholar 

  56. Dairkee SH et al (1987) Monoclonal marker that predicts early recurrence of breast cancer. Lancet 1:514

    PubMed  CAS  Google Scholar 

  57. Tischkowitz M et al (2007) Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7(1):134

    PubMed  Google Scholar 

  58. Tan DS et al (2007) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat [Epub ahead of print]

  59. Rakha EA et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506

    PubMed  CAS  Google Scholar 

  60. Kusinska R et al (2005) Immunohistochemical identification of basal-type cytokeratins in invasive ductal breast carcinoma—relation with grade, stage, estrogen receptor and HER2. Pol J Pathol 56(3):107–110

    PubMed  CAS  Google Scholar 

  61. Rakha EA et al (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42(18):3149–3156

    PubMed  CAS  Google Scholar 

  62. Ribeiro-Silva A et al (2005) p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology 47(5):458–466

    PubMed  CAS  Google Scholar 

  63. Fulford LG et al (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49(1):22–34

    PubMed  CAS  Google Scholar 

  64. Jones C et al (2001) CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer 85(3):422–427

    PubMed  CAS  Google Scholar 

  65. Reis-Filho JS et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49(1):10–21

    PubMed  CAS  Google Scholar 

  66. Bankfalvi A et al (2004) Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod Pathol 17(9):1051–1061

    PubMed  Google Scholar 

  67. van de Rijn M et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161(6):1991–1996

    PubMed  Google Scholar 

  68. Tang P et al (2006) Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Ann Clin Lab Sci 36(1):16–22

    PubMed  Google Scholar 

  69. Bryan BB, Schnitt SJ, Collins LC (2006) Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol 19:617–621

    PubMed  CAS  Google Scholar 

  70. Tot T (2000) The cytokeratin profile of medullary carcinoma of the breast. Histopathology 37(2):175–181

    PubMed  CAS  Google Scholar 

  71. Stingl J, Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7:791–799

    PubMed  CAS  Google Scholar 

  72. Moll R (1998) Cytokeratins as markers of differentiation in the diagnosis of epithelial tumors. Subcell Biochem 31:205–262

    PubMed  CAS  Google Scholar 

  73. Bocker W et al (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 82(6):737–746

    PubMed  Google Scholar 

  74. Charafe-Jauffret E et al (2007) Moesin expression is a marker of basal breast carcinomas. Int J Cancer 121(8):1779–1785

    PubMed  CAS  Google Scholar 

  75. Rodriguez-Pinilla SM et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12(5):1533–1539

    PubMed  CAS  Google Scholar 

  76. Pinilla SM et al (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99:85–90

    PubMed  CAS  Google Scholar 

  77. Reis-Filho JS et al (2003) Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol 11(1):1–8

    PubMed  CAS  Google Scholar 

  78. Leibl S et al (2005) Metaplastic breast carcinomas: are they of myoepithelial differentiation?: immunohistochemical profile of the sarcomatoid subtype using novel myoepithelial markers. Am J Surg Pathol 29(3):347–353

    PubMed  Google Scholar 

  79. Dent R et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15):4429–4434

    PubMed  Google Scholar 

  80. Kreike B et al (2007) Gene expression profiling and histopathological characterization of triple negative/basal-like breast carcinomas. Breast Cancer Res 9(5):R65

    PubMed  Google Scholar 

  81. Rakha EA et al (2007) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32

    PubMed  CAS  Google Scholar 

  82. Bidard FC et al (2007) Does triple-negative phenotype accurately identify basal-like tumour? An immunohistochemical analysis based on 143 ‘triple-negative’ breast cancers. Ann Oncol 18(7):1285–1286

    PubMed  Google Scholar 

  83. Rakha EA et al (2007) Are triple negative tumours and basal-like breast cancer synonymous? Breast Cancer Res 9(6):R80

    Google Scholar 

  84. Rouzier R et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    PubMed  CAS  Google Scholar 

  85. Tan DS et al (2007) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat [Epub ahead of print]

  86. Rody A et al (2007) The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial. Breast 16(3):235–240

    PubMed  CAS  Google Scholar 

  87. Abd El-Rehim DM et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203(2):661–671

    PubMed  Google Scholar 

  88. Rhodes A et al (2000) Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J Clin Pathol 53(2):125–130

    PubMed  CAS  Google Scholar 

  89. Wolff AC et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    PubMed  CAS  Google Scholar 

  90. West M et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98(20):11462–11467

    PubMed  CAS  Google Scholar 

  91. Yang XR et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16(3):439–443

    PubMed  CAS  Google Scholar 

  92. Calza S et al (2006) Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 8(4):R34

    PubMed  Google Scholar 

  93. Jacquemier J et al (2005) Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol 207(3):260–268

    PubMed  CAS  Google Scholar 

  94. Bertucci F et al (2006) Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 66(9):4636–4644

    PubMed  CAS  Google Scholar 

  95. Rodriguez-Pinilla SM et al (2007) Sporadic invasive breast carcinomas with medullary features display a basal-like phenotype: an immunohistochemical and gene amplification study. Am J Surg Pathol 31(4):501–508

    PubMed  Google Scholar 

  96. Tsuda H et al (2000) Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol 24(2):197–202

    PubMed  CAS  Google Scholar 

  97. Seewaldt VL, Scott V (2007) Images in clinical medicine. Rapid progression of basal-type breast cancer. N Engl J Med 356(13):e12

    PubMed  Google Scholar 

  98. Collett K et al (2005) A basal epithelial phenotype is more frequent in interval breast cancers compared with screen detected tumors. Cancer Epidemiol Biomarkers Prev 14(5):1108–1112

    PubMed  CAS  Google Scholar 

  99. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25(43):5846–5853

    PubMed  CAS  Google Scholar 

  100. Turner NC et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132

    PubMed  CAS  Google Scholar 

  101. Palacios J et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9(10 Pt 1):3606–3614

    PubMed  CAS  Google Scholar 

  102. Arnes JB et al (2005) Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res 11(11):4003–4011

    PubMed  CAS  Google Scholar 

  103. Lakhani SR et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20(9):2310–2318

    PubMed  CAS  Google Scholar 

  104. Foulkes WD et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95(19):1482–1485

    PubMed  CAS  Google Scholar 

  105. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    PubMed  CAS  Google Scholar 

  106. Stoppa-Lyonnet D et al (2000) Familial invasive breast cancers: worse outcome related to BRCA1 mutations. J Clin Oncol 18(24):4053–4059

    PubMed  CAS  Google Scholar 

  107. Haffty BG et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36):5652–5657

    PubMed  Google Scholar 

  108. Perreard L et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8(2):R23

    PubMed  Google Scholar 

  109. Feinstein AR, Sosin DM, Wells CK (1985) The Will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med 312(25):1604–1608

    Article  PubMed  CAS  Google Scholar 

  110. Pedersen L et al (1995) Medullary carcinoma of the breast. Prevalence and prognostic importance of classical risk factors in breast cancer. Eur J Cancer 31A(13–14):2289–2295

    PubMed  CAS  Google Scholar 

  111. Rapin V et al (1988) Medullary breast carcinoma. A reevaluation of 95 cases of breast cancer with inflammatory stroma. Cancer 61(12):2503–2510

    PubMed  CAS  Google Scholar 

  112. Eichhorn JH (2004) Medullary carcinoma, provocative now as then. Semin Diagn Pathol 21(1):65–73

    PubMed  Google Scholar 

  113. Patanaphan V, Salazar OM, Risco R (1988) Breast cancer: metastatic patterns and their prognosis. South Med J 81(9):1109–1112

    PubMed  CAS  Google Scholar 

  114. Hicks DG et al (2006) Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol 30(9):1097–1104

    PubMed  Google Scholar 

  115. Gaedcke J et al (2007) Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol 20(8):864–870

    PubMed  CAS  Google Scholar 

  116. Palmieri D et al (2006) Brain metastases of breast cancer. Breast Dis 26:139–147

    PubMed  CAS  Google Scholar 

  117. Grupka NL et al (2004) Epidermal growth factor receptor status in breast cancer metastases to the central nervous system. Comparison with HER-2/neu status. Arch Pathol Lab Med 128(9):974–979

    PubMed  CAS  Google Scholar 

  118. Eusebi V et al (1987) Adenomyoepithelioma of the breast with a distinctive type of apocrine adenosis. Histopathology 11(3):305–315

    PubMed  CAS  Google Scholar 

  119. Foschini MP, Eusebi V (1998) Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch 432(4):303–310

    PubMed  CAS  Google Scholar 

  120. Lakhani SR et al (1995) Malignant myoepithelioma (myoepithelial carcinoma) of the breast: a detailed cytokeratin study. J Clin Pathol 48(2):164–167

    PubMed  CAS  Google Scholar 

  121. Thorner PS et al (1986) Malignant myoepithelioma of the breast. An immunohistochemical study by light and electron microscopy. Cancer 57(4):745–750

    PubMed  CAS  Google Scholar 

  122. Pia-Foschini M et al (2003) Salivary gland-like tumours of the breast: surgical and molecular pathology. J Clin Pathol 56(7):497–506

    PubMed  CAS  Google Scholar 

  123. Kinkor Z et al (2004) Matrix-producing breast carcinoma with myoepithelial differentiation—description of 11 cases and review of literature aimed at histogenesis and differential diagnosis. Ceska Gynekol 69(3):229–236

    PubMed  CAS  Google Scholar 

  124. Stingl J et al (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67(2):93–109

    PubMed  CAS  Google Scholar 

  125. Birnbaum D et al (2004) Basal and luminal breast cancers: basic or luminous? (review). Int J Oncol 25(2):249–258

    PubMed  CAS  Google Scholar 

  126. Dontu G et al (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72

    PubMed  CAS  Google Scholar 

  127. Behbod F, Rosen JM (2005) Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26(4):703–711

    PubMed  CAS  Google Scholar 

  128. Reis-Filho JS (2005) Re: Korsching et al. The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457. J Pathol (2005) 207(3):367–369; author reply 370–371

    Google Scholar 

  129. Foulkes WD (2004) BRCA1 functions as a breast stem cell regulator. J Med Genet 41(1):1–5

    PubMed  CAS  Google Scholar 

  130. Hosey AM et al (2007) Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 99(22):1683–1694

    PubMed  CAS  Google Scholar 

  131. McCarthy A et al (2007) A mouse model of basal-like breast carcinoma with metaplastic elements. J Pathol 211(4):389–398

    PubMed  CAS  Google Scholar 

  132. Gould VE (1986) Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol 17(3):212–215

    PubMed  CAS  Google Scholar 

  133. Brown DC et al (1987) Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology 11(5):477–486

    PubMed  CAS  Google Scholar 

  134. Simpson PT et al (2005) Molecular evolution of breast cancer. J Pathol 205(2):248–254

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian O. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakha, E.A., El-Sayed, M.E., Reis-Filho, J. et al. Patho-biological aspects of basal-like breast cancer. Breast Cancer Res Treat 113, 411–422 (2009). https://doi.org/10.1007/s10549-008-9952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9952-1

Keywords

Navigation