Skip to main content

Advertisement

Log in

Loss of expression of chromosome 16q genes DPEP1 and CTCF in lobular carcinoma in situ of the breast

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background Loss of the chromosomal material at 16q is the most frequent genetic event in invasive and in situ (LCIS) lobular carcinoma of the breast. However, the smallest region of overlap at 16q is not restricted to just the CDH1 locus harbouring E-cadherin, suggesting that neighbouring genes might be involved in the development and progression of these tumours. Potential novel tumour suppressor genes (TSG) at 16q include CCCTC-binding factor (CTCF), Decreased Expression in Renal and Prostate Cancer (DERPC) and Dipeptidase 1 (DPEP1). The aim of this study is to assess the expression of these genes in LCIS and compare them with normal breast, using CDH1 as a control, in order to evaluate their role as TSGs. Methods Cells from LCIS cases and normal breast lobules were microdissected and expression of target genes were quantified using real-time PCR. In addition, immunohistochemistry (IHC) for E-cadherin and CTCF was performed on paraffin processed LCIS (n = 49) and normal breast cases. Results All LCIS showed negative expression of E-cadherin. Similar to CDH1, CTCF and DPEP1 gene expression was significantly lower in LCIS cases compared with normal cases (P < 0.05). CTCF IHC expression showed significant reduction in LCIS compared to normal parenchymal cells. However, there was no difference in expression of DERPC between LCIS and normal breast tissue. Conclusions In addition to CDH1, loss of CTCF and DPEP1 gene expression suggest they are possible TSG in breast cancer and may, similar to CDH1, be potentially utilised as markers of predisposition of women diagnosed with LCIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frykberg ER (1999) Lobular carcinoma in situ of the breast. Breast J 5:296–303

    Article  PubMed  Google Scholar 

  2. Bland KI, Menck HR, Scott-Conner CE, Morrow M, Winchester DJ, Winchester DP (1998) The National Cancer Data Base 10-year survey of breast carcinoma treatment at hospitals in the United States. Cancer 83:1262–1273

    Article  PubMed  CAS  Google Scholar 

  3. Abdel-Fatah TM, Powe DG, Hodi Z, Lee AH, Reis-Filho JS, Ellis IO (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31:417–426

    Article  PubMed  Google Scholar 

  4. Gunther K, Merkelbach-Bruse S, Amo-Takyi BK, Handt S, Schroder W, Tietze L (2001) Differences in genetic alterations between primary lobular and ductal breast cancers detected by comparative genomic hybridization. J Pathol 193:40–47

    Article  PubMed  CAS  Google Scholar 

  5. Cleton-Jansen AM (2002) E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res 4:5–8

    Article  PubMed  CAS  Google Scholar 

  6. Amari M, Suzuki A, Moriya T, Yoshinaga K, Amano G, Sasano H, Ohuchi N, Satomi S, Horii A (1999) LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 16q, and 17q in atypical ductal hyperplasia. Oncol Rep 6:1277–1280

    PubMed  CAS  Google Scholar 

  7. Baum M (1995) Breast cancer: a guide for every women. Oxford University Press

  8. Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO (2006) Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 45:527–535

    Article  PubMed  CAS  Google Scholar 

  9. Etzell JE, Devries S, Chew K, Florendo C, Molinaro A, Ljung BM, Waldman FM (2001) Loss of chromosome 16q in lobular carcinoma in situ. Hum Pathol 32:292–296

    Article  PubMed  CAS  Google Scholar 

  10. Rakha EA, Pinder SE, Paish CE, Ellis IO (2004) Expression of the transcription factor CTCF in invasive breast cancer: a candidate gene located at 16q22.1. Br J Cancer 91:1591–1596

    Article  PubMed  CAS  Google Scholar 

  11. McIver CM, Lloyd JM, Hewett PJ, Hardingham JE (2004) Dipeptidase 1: a candidate tumor-specific molecular marker in colorectal carcinoma. Cancer Lett 209:67–74

    Article  PubMed  CAS  Google Scholar 

  12. Berx G, Becker KF, Hofler H, van Roy F (1998) Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12:226–237

    Article  PubMed  CAS  Google Scholar 

  13. Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, Cornelisse C (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 13:1919–1925

    PubMed  CAS  Google Scholar 

  14. Vostrov AA, Quitschke WW (1997) The zinc finger protein CTCF binds to the APBbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation. J Biol Chem 272:33353–33359

    Article  PubMed  CAS  Google Scholar 

  15. Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813

    PubMed  CAS  Google Scholar 

  16. Burcin M, Arnold R, Lutz M, Kaiser B, Runge D, Lottspeich F, Filippova GN, Lobanenkov VV, Renkawitz R (1997) Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol Cell Biol 17:1281–1288

    PubMed  CAS  Google Scholar 

  17. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A, Ohlsson R, Lobanenkov VV (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10:853–856

    Article  PubMed  CAS  Google Scholar 

  18. Filippova GN, Qi CF, Ulmer JE, Moore JM, Ward MD, Hu YJ, Loukinov DI, Pugacheva EM, Klenova EM, Grundy PE, Feinberg AP, Cleton-Jansen AM, Moerland EW, Cornelisse CJ, Suzuki H, Komiya A, Lindblom A, Dorion-Bonnet F, Neiman PE, Morse HC 3rd, Collins SJ, Lobanenkov VV (2002) Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity. Cancer Res 62:48–52

    PubMed  CAS  Google Scholar 

  19. Rasko JE, Klenova EM, Leon J, Filippova GN, Loukinov DI, Vatolin S, Robinson AF, Hu YJ, Ulmer J, Ward MD, Pugacheva EM, Neiman PE, Morse HC 3rd, Collins SJ, Lobanenkov VV (2001) Cell growth inhibition by the multifunctional multivalent zinc-finger factor CTCF. Cancer Res 61:6002–6007

    PubMed  CAS  Google Scholar 

  20. Kozak EM, Tate SS (1982) Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 257:6322–6327

    PubMed  CAS  Google Scholar 

  21. Sun M, Ma L, Xu L, Li J, Zhang W, Petrovics G, Makarem M, Sesterhenn I, Zhang M, Blanchette-Mackie EJ, Moul J, Srivastava S, Zou Z (2002) A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors. Mol Med 8:655–663

    PubMed  CAS  Google Scholar 

  22. Madjd Z, Pinder SE, Paish C, Ellis IO, Carmichael J, Durrant LG (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200:633–639

    Article  PubMed  CAS  Google Scholar 

  23. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  24. Lehmann U, Kreipe H (2001) Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25:409–418

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez-Gonzalez R, Jones A, Garcia-Rodriguez E, Chen PY, Idica A, Lockett SJ, Barcellos-Hoff MH, Ortiz-De-Solorzano C (2002) System for combined three-dimensional morphological and molecular analysis of thick tissue specimens. Microsc Res Tech 59:522–530

    Article  PubMed  CAS  Google Scholar 

  26. Vos CB, Cleton-Jansen AM, Berx G, de Leeuw WJ, ter Haar NT, van Roy F, Cornelisse CJ, Peterse JL, van de Vijver MJ (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    PubMed  CAS  Google Scholar 

  27. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  28. Mastracci TL, Tjan S, Bane AL, O’Malley FP, Andrulis IL (2005) E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol 18:741–751

    Article  PubMed  CAS  Google Scholar 

  29. Aulmann S, Blaker H, Penzel R, Rieker RJ, Otto HF, Sinn HP (2003) CTCF gene mutations in invasive ductal breast cancer. Breast Cancer Res Treat 80:347–352

    Article  PubMed  CAS  Google Scholar 

  30. Austruy E, Cohen-Salmon M, Antignac C, Beroud C, Henry I, Nguyen VC, Brugieres L, Junien C, Jeanpierre C (1993) Isolation of kidney complementary DNAs down-expressed in Wilms’ tumor by a subtractive hybridization approach. Cancer Res 53:2888–2894

    PubMed  CAS  Google Scholar 

  31. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE, Walborg EF Jr (1998) The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106 1(Suppl):289–295

    Article  Google Scholar 

  32. Hiraguri S, Godfrey T, Nakamura H, Graff J, Collins C, Shayesteh L, Doggett N, Johnson K, Wheelock M, Herman J, Baylin S, Pinkel D, Gray J (1998) Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Res 58:1972–1977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A.R., Krivinskas, S., Young, P. et al. Loss of expression of chromosome 16q genes DPEP1 and CTCF in lobular carcinoma in situ of the breast. Breast Cancer Res Treat 113, 59–66 (2009). https://doi.org/10.1007/s10549-008-9905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9905-8

Keywords

Navigation