Skip to main content

Advertisement

Log in

Optimal treatment strategies in postmenopausal women with hormone-receptor-positive and HER2-negative metastatic breast cancer

  • Optimizing Breast Cancer Patient
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Metastatic breast cancer (MBC) is unfortunately still considered incurable; treatment aims to prolong progression-free and overall survival, relieve disease symptoms, and maintain quality of life. Treatment can include endocrine therapy, radiotherapy, chemotherapy, bisphosphonates, and/or targeted therapy; which is used depends on the characteristics of the disease [e.g., hormone receptor status, disease site(s), and response to previous treatment] and the patient (age, comorbidity, and personal preferences). For most patients with hormone-receptor-positive tumors, the first choice of treatment is further endocrine therapy, but endocrine resistance is a common problem in advanced disease. Several novel anticancer agents have been developed with the aim of overcoming endocrine resistance, many of which target intracellular signaling pathways implicated in disease progression or resistance. Among these, inhibitors of growth factor receptor tyrosine kinases and of mammalian target of rapamycin have shown the most promise in clinical trials. Chemotherapy is the cornerstone of MBC treatment in most women. Important considerations when choosing chemotherapy include the choice of agents, and whether to use single-agent or combination therapy. Anthracyclines are one of the most active cytotoxic agents currently used for the treatment of breast cancer, and for many women, further anthracycline therapy at progression or relapse would be the preferred option. However, lifetime exposure to anthracyclines is limited by cumulative cardiotoxicity, which often prevents rechallenge in later lines of therapy. Newer anthracycline formulations have been developed with lower cardiotoxicity than the conventional anthracycline doxorubicin, but these agents still impair cardiac function, and have maximum recommended lifetime doses. Recently, the concomitant use of cardioprotective agents, such as dexrazoxane, has emerged as an effective approach to reducing the cardiotoxic effects of anthracyclines, thus permitting retreatment. Bisphosphonates, which are not associated with the acute toxicities of cytotoxic chemotherapy drugs, are the established standard of care for patients with metastatic bone disease, and have greatly improved outcomes over the last decade. The search is ongoing for novel agents that will, hopefully, bring a cure closer to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chung CT, Carlson RW (2003) Goals and objectives in the management of metastatic breast cancer. Oncologist 8:514–520. doi:10.1634/theoncologist.8-6-514

    Article  PubMed  Google Scholar 

  2. Gennari A, Conte P, Rosso R et al (2005) Survival of metastatic breast carcinoma patients over a 20-year period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer 104:1742–1750. doi:10.1002/cncr.21359

    Article  PubMed  Google Scholar 

  3. Beslija S, Bonneterre J, Burstein H et al (2007) Second consensus on medical treatment of metastatic breast cancer. Ann Oncol 18:215–225. doi:10.1093/annonc/mdl155

    Article  PubMed  CAS  Google Scholar 

  4. European School of Oncology (ESO)-MBC Task Force (2007) Metastatic breast cancer. Recommendations proposal from the European School of Oncology (ESO). MBC Task Force. Breast 16:9–10

    Article  Google Scholar 

  5. Kataja VV, Colleoni M, Bergh J, ESMO Guidelines Task Force (2005) ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of locally recurrent or metastatic breast cancer (MBC). Ann Oncol 16(Suppl 1):i10–i12. doi:10.1093/annonc/mdi816

    Article  PubMed  Google Scholar 

  6. Gligorov J, Luporsi E, Namer M, Serin D, for the Saint Paul de Vence Guidelines Task force (2007) Breast cancer recommendations for clinical practice. Oncologie 9:593–644. doi:10.1007/s10269-007-0753-7

    Article  Google Scholar 

  7. Normanno N, Di Maio M, De Maio E et al (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747. doi:10.1677/erc.1.00857

    Article  PubMed  CAS  Google Scholar 

  8. Carrick S, Parker S, Wilcken N et al (2005) Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2:CD003372

    PubMed  Google Scholar 

  9. Jensen BV (2006) Cardiotoxic consequences of anthracycline-containing therapy in patients with breast cancer. Semin Oncol 33(3 suppl 8):S15–S21. doi:10.1053/j.seminoncol.2006.04.022

    Article  PubMed  CAS  Google Scholar 

  10. Rivera E (2003) Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist 8(Suppl 2):3–9. doi:10.1634/theoncologist.8-suppl_2-3

    Article  PubMed  CAS  Google Scholar 

  11. Cvetkovic RS, Scott LJ (2005) Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs 65:1005–1024. doi:10.2165/00003495-200565070-00008

    Article  PubMed  CAS  Google Scholar 

  12. Pavlakis N, Schmidt R, Stockler M (2005) Bisphosphonates for breast cancer. Cochrane Database Syst Rev 3:CD003474

    PubMed  Google Scholar 

  13. Bonneterre J, Buzdar A, Nabholtz JM et al (2001) Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 92:2247–2258. doi :10.1002/1097-0142(20011101)92:9<2247::AID-CNCR1570>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  14. Mouridsen H, Gershanovich M, Sun Y et al (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19:2596–2606

    PubMed  CAS  Google Scholar 

  15. Paridaens R, Therasse P, Dirix L et al (2004) First line hormonal treatment (HT) for metastatic breast cancer (MBC) with exemestane (E) or tamoxifen (T) in postmenopausal patients (pts)—a randomized phase III trial of the EORTC Breast Group. J Clin Oncol 22:14S Abstract 515

    Google Scholar 

  16. Buzdar AU, Jonat W, Howell A et al (1998) Anastrozole versus megestrol acetate in the treatment of postmenopausal women with advanced breast carcinoma: results of a survival update based on a combined analysis of data from two mature phase III trials. Arimidex Study Group. Cancer 83:1142–1152. doi :10.1002/(SICI)1097-0142(19980915)83:6<1142::AID-CNCR13>3.3.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  17. Dombernowsky P, Smith I, Falkson G et al (1998) Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J Clin Oncol 16:453–461

    PubMed  CAS  Google Scholar 

  18. Kaufmann M, Bajetta E, Dirix LY et al (2000) Exemestane is superior to megestrol acetate after tamoxifen failure in postmenopausal women with advanced breast cancer: results of a phase III randomized double-blind trial. The Exemestane Study Group. J Clin Oncol 18:1399–1411

    PubMed  CAS  Google Scholar 

  19. Lønning PE, Bajetta E, Murray R et al (2000) Activity of exemestane in metastatic breast cancer after failure of nonsteroidal aromatase inhibitors: a phase II trial. J Clin Oncol 18:2234–2344

    PubMed  Google Scholar 

  20. Bertelli G, Garrone O, Merlano M et al (2005) Sequential treatment with exemestane and non-steroidal aromatase inhibitors in advanced breast cancer. Oncology 69:471–477. doi:10.1159/000090985

    Article  PubMed  CAS  Google Scholar 

  21. Steele N, Zekri J, Coleman R et al (2006) Exemestane in metastatic breast cancer: effective therapy after third-generation non-steroidal aromatase inhibitor failure. Breast 15:430–436. doi:10.1016/j.breast.2005.08.032

    Article  PubMed  CAS  Google Scholar 

  22. Carlini P, Michelotti A, Ferretti G et al (2007) Clinical evaluation of the use of exemestane as further hormonal therapy after nonsteroidal aromatase inhibitors in postmenopausal metastatic breast cancer patients. Cancer Invest 25:102–105. doi:10.1080/07357900701224789

    Article  PubMed  CAS  Google Scholar 

  23. Chin YS, Beresford MJ, Ravichandran D et al (2007) Exemestane after nonsteroidal aromatase inhibitors for post-menopausal women with advanced breast cancer. Breast 16:436–439. doi:10.1016/j.breast.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  24. Robertson JF, Osborne CK, Howell A et al (2003) Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: a prospective combined analysis of two multicenter trials. Cancer 98:229–238. doi:10.1002/cncr.11468

    Article  PubMed  CAS  Google Scholar 

  25. Chia S, Gradishar W (2008) Fulvestrant: expanding the endocrine treatment options for patients with hormone-receptor-positive advanced breast cancer. Breast 17(Suppl 3):S16–S21. doi:10.1016/j.breast.2007.12.004

    Article  PubMed  Google Scholar 

  26. Safra T, Greenberg J, Ron IG et al (2008) Fulvestrant in heavily pretreated metastatic breast cancer: is it still effective as a very advanced line of treatment? Isr Med Assoc J 10:339–343

    PubMed  Google Scholar 

  27. Bartsch R, Mlineritsch B, Gnant M et al (2008) The Austrian fulvestrant registry: results from a prospective observation of fulvestrant in postmenopausal patients with metastatic breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-008-0132-0

  28. Gligorov J, Azria D, Namer M et al (2007) Novel therapeutic strategies combining antihormonal and biological targeted therapies in breast cancer: focus on clinical trials and perspectives. Crit Rev Oncol Hematol 64:115–128. doi:10.1016/j.critrevonc.2007.06.010

    Article  PubMed  Google Scholar 

  29. Lane HA, Lebwohl D (2006) Future directions in the treatment of hormone-sensitive advanced breast cancer: the RAD001 (Everolimus)-letrozole clinical program. Semin Oncol 33(2 suppl 7):S18–S25. doi:10.1053/j.seminoncol.2006.03.024

    Article  PubMed  CAS  Google Scholar 

  30. Wakeling AE (2005) Inhibitors of growth factor signalling. Endocr Relat Cancer 12(Suppl 1):S183–S187. doi:10.1677/erc.1.01014

    Article  PubMed  CAS  Google Scholar 

  31. Demonty G, Bernard-Marty C, Puglisi F et al (2007) Progress and new standards of care in the management of HER-2 positive breast cancer. Eur J Cancer 43:497–509. doi:10.1016/j.ejca.2006.10.020

    Article  PubMed  Google Scholar 

  32. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182. doi:10.1126/science.3798106

    Article  PubMed  CAS  Google Scholar 

  33. De Placido S, Carlomagno C, De Laurentiis M et al (1998) c-erbB2 expression predicts tamoxifen efficacy in breast cancer patients. Breast Cancer Res Treat 52:55–64. doi:10.1023/A:1006159001039

    Article  PubMed  Google Scholar 

  34. Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16:413–428

    PubMed  CAS  Google Scholar 

  35. Ellis MJ, Coop A, Singh B et al (2001) Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 19:3808–3816

    PubMed  CAS  Google Scholar 

  36. Kaufmann B, Makdey J, Clemens M et al (2006) Trastuzumab plus anastrozole prolongs progression-free survival in postmenopausal women with HER2-positive, hormone-dependent metastatic breast cancer (MBC). Ann Oncol 17(Suppl 9): Abstract LBA2

  37. Salomon DS, Brandt R, Ciardiello F et al (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232. doi:10.1016/1040-8428(94)00144-I

    Article  PubMed  CAS  Google Scholar 

  38. Knowlden JM, Hutcheson IR, Jones HE et al (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044. doi:10.1210/en.2002-220620

    Article  PubMed  CAS  Google Scholar 

  39. Nicholson RI, Hutcheson IR, Harper ME et al (2001) Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer 8:175–182. doi:10.1677/erc.0.0080175

    Article  PubMed  CAS  Google Scholar 

  40. Chu I, Blackwell K, Chen S et al (2005) The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 65:18–25

    PubMed  CAS  Google Scholar 

  41. Johnston SR (2005) Combinations of endocrine and biological agents: present status of therapeutic and presurgical investigations. Clin Cancer Res 11:889s–899s

    PubMed  CAS  Google Scholar 

  42. Perez-Tenorio G, Stal O, Southeast Sweden Breast Cancer Group (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86:540–545. doi:10.1038/sj.bjc.6600126

    Article  PubMed  CAS  Google Scholar 

  43. Clark AS, West K, Streicher S et al (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717

    PubMed  CAS  Google Scholar 

  44. Yu K, Toral-Barza L, Discafani C et al (2001) mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8:249–258. doi:10.1677/erc.0.0080249

    Article  PubMed  Google Scholar 

  45. de Graffenried LA, Friedrichs WE, Russell DH et al (2004) Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity. Clin Cancer Res 10:8059–8067. doi:10.1158/1078-0432.CCR-04-0035

    Article  Google Scholar 

  46. Hynes NE, Boulay A (2006) The mTOR pathway in breast cancer. J Mammary Gland Biol Neoplasia 11:53–61. doi:10.1007/s10911-006-9012-6

    Article  PubMed  Google Scholar 

  47. Sini P, Wyder L, Schnell C et al (2005) The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 15(11):4521–4532. doi:10.1158/1078-0432.CCR-04-1954

    Article  Google Scholar 

  48. Lane HA, Schell C, Theuer A et al (2002) Antiangiogenic activity of RAD001, an orally active anticancer agent. Proc Am Assoc Cancer Res 43:184 (Abstract 992)

    Google Scholar 

  49. Boulay A, Rudloff J, Ye J et al (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 11:5319–5328. doi:10.1158/1078-0432.CCR-04-2402

    Article  PubMed  CAS  Google Scholar 

  50. O’Donnell A, Faivre S, Judson I et al (2003) A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc Am Soc Clin Oncol 22:200 (Abstract 803)

    Google Scholar 

  51. Tabernero J, Rojo F, Burris H et al (2005) A phase I study with tumor molecular pharmacodynamic (MPD) evaluation of dose and schedule of the oral mTOR-inhibitor everolimus (RAD001) in patients (pts) with advanced solid tumors. J Clin Oncol 23:193s. doi:10.1200/JCO.2005.00.398 (Abstract 3007)

    Article  CAS  Google Scholar 

  52. Awada A, Cardoso F, Fontaine C et al (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44:84–91. doi:10.1016/j.ejca.2007.10.003

    Article  PubMed  CAS  Google Scholar 

  53. Di Cosimo S, Seoane J, Guzman M et al (2005) Combination of the mammalian target of rapamycin (mTOR) inhibitor everolimus (E) with the insulin like growth factor-1-receptor (IGF-1-R) inhibitor NVP-AEW-541: a mechanistic based anti-tumor strategy. J Clin Oncol 23:219s (Abstract 3112)

    Google Scholar 

  54. Di Cosimo S, Matar P, Rojo F et al (2004) The mTOR pathway inhibitor RAD001 induces activation of AKT which is completely abolished by gefitinib, an anti-EGFR tyrosine kinase inhibitor, and combined sequence specific treatment results in greater antitumor activity. Proc Am Assoc Cancer Res 44:1233

    Google Scholar 

  55. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717. doi:10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  56. Fossati R, Confalonieri C, Torri V et al (1998) Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31, 510 women. J Clin Oncol 16:3439–3460

    PubMed  CAS  Google Scholar 

  57. Robert NJ, Vogel CL, Henderson IC et al (2004) The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer. Semin Oncol 31(Suppl 13):106–146. doi:10.1053/j.seminoncol.2004.09.018

    Article  PubMed  CAS  Google Scholar 

  58. Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8(Suppl 2):17–24. doi:10.1634/theoncologist.8-suppl_2-17

    Article  PubMed  CAS  Google Scholar 

  59. Myers C (1998) The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol 25:10

    PubMed  CAS  Google Scholar 

  60. Ng R, Better N, Green MD (2006) Anticancer agents and cardiotoxicity. Semin Oncol 33:2–14. doi:10.1053/j.seminoncol.2005.11.001

    Article  PubMed  CAS  Google Scholar 

  61. Hasinoff BB (1998) Chemistry of dexrazoxane and analogues. Semin Oncol 25(4 suppl 10):3–9

    PubMed  CAS  Google Scholar 

  62. Villani F, Galimberti M, Monti E et al (1990) Effect of ICRF-187 pretreatment against doxorubicin-induced delayed cardiotoxicity in the rat. Toxicol Appl Pharmacol 102:292–299. doi:10.1016/0041-008X(90)90028-S

    Article  PubMed  CAS  Google Scholar 

  63. Speyer JL, Green MD, Zeleniuch-Jacquotte A et al (1992) ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 10:117–127

    PubMed  CAS  Google Scholar 

  64. Speyer JL, Green MD, Kramer E et al (1988) Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N Engl J Med 319:745–752

    PubMed  CAS  Google Scholar 

  65. Kolaric K, Bradamante V, Cervek J et al (1995) A phase II trial of cardioprotection with cardioxane (ICRF-187) in patients with advanced breast cancer receiving 5-fluorouracil, doxorubicin and cyclophosphamide. Oncology 52:251–255

    Article  PubMed  CAS  Google Scholar 

  66. Venturini M, Michelotti A, Del Mastro L et al (1996) Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 14:3112–3120

    PubMed  CAS  Google Scholar 

  67. Sparano JA, Speyer J, Gradishar WJ et al (1999) Phase I trial of escalating doses of paclitaxel plus doxorubicin and dexrazoxane in patients with advanced breast cancer. J Clin Oncol 17:880–886

    PubMed  CAS  Google Scholar 

  68. Swain SM, Whaley FS, Gerber MC et al (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332

    PubMed  CAS  Google Scholar 

  69. Swain SM, Whaley FS, Gerber MC et al (1997) Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15:1333–1340

    PubMed  CAS  Google Scholar 

  70. Seymour L, Bramwell V, Moran LA (1999) Use of dexrazoxane as a cardioprotectant in patients receiving doxorubicin or epirubicin chemotherapy for the treatment of cancer. The Provincial Systemic Treatment Disease Site Group. Cancer Prev Control 3:145–159

    PubMed  CAS  Google Scholar 

  71. van Dalen EC, Caron HN, Dickinson HO et al (2005) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev 1:CD003917

    PubMed  Google Scholar 

  72. Ghersi D, Wilcken N, Simes J et al (2005) Taxane containing regimens for metastatic breast cancer. Cochrane Database Syst Rev 2:CD003366

    PubMed  Google Scholar 

  73. Ershler WB (2006) Capecitabine monotherapy: safe and effective treatment for metastatic breast cancer. Oncologist 11:325–335. doi:10.1634/theoncologist.11-4-325

    Article  PubMed  CAS  Google Scholar 

  74. Mano M (2006) Vinorelbine in the management of breast cancer: new perspectives, revived role in the era of targeted therapy. Cancer Treat Rev 32:106–118. doi:10.1016/j.ctrv.2005.12.008

    Article  PubMed  CAS  Google Scholar 

  75. Smith IE (2006) Overview of gemcitabine activity in advanced breast cancer. Semin Oncol 33(3 suppl 9):S19–S23. doi:10.1053/j.seminoncol.2006.03.020

    Article  PubMed  CAS  Google Scholar 

  76. Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799. doi:10.1200/JCO.2005.05.098

    Article  PubMed  CAS  Google Scholar 

  77. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676. doi:10.1056/NEJMoa072113

    Article  PubMed  CAS  Google Scholar 

  78. Sledge G, Miller K, Moisa C et al (2007) Safety and efficacy of capecitabine (C) plus bevacizumab (B) as first-line in metastatic breast cancer. J Clin Oncol 25(18S) (Abstract 1013)

  79. Miles D, Chan A, Romieu G et al (2008) Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO. J Clin Oncol 26 (Abstract LBA1011)

  80. Body JJ (2006) Breast cancer: bisphosphonate therapy for metastatic bone disease. Clin Cancer Res 12:6258s–6263s. doi:10.1158/1078-0432.CCR-06-0840

    Article  PubMed  CAS  Google Scholar 

  81. Santini D, Fratto ME, Vincenzi B et al (2006) Zoledronic acid in the management of metastatic bone disease. Expert Opin Biol Ther 6:1333–1348. doi:10.1517/14712598.6.12.1333

    Article  PubMed  CAS  Google Scholar 

  82. Gnant M, Mlineritsch B, Luschin-Ebengreuth G et al (2008) Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol 9:840–849. doi:10.1016/S1470-2045(08)70204-3

    Article  PubMed  CAS  Google Scholar 

  83. Conte PF, Rosen LS, Gordon D et al (2004) Zoledronic acid is superior to pamidronate in patients with breast cancer and multiple myeloma: analysis of patients at high risk for skeletal complications. Ann Oncol 15(Suppl 3):iii124 (Abstract 463PD)

    Google Scholar 

  84. Hei YJ, Saad F, Coleman RE, Chen YM (2005) Fractures negatively affect survival in patients with bone metastases from breast cancer. Breast Cancer Res Treat 88 (Abstract 6036)

  85. Hortobagyi GN, Theriault RL, Lipton A et al (1998) Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16:2038–2044

    PubMed  CAS  Google Scholar 

  86. Theriault RL, Lipton A, Hortobagyi GN et al (1999) Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 17:846–854

    PubMed  CAS  Google Scholar 

  87. Kohno N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321. doi:10.1200/JCO.2005.05.116

    Article  PubMed  CAS  Google Scholar 

  88. Sherer JT, Adamus AT (2007) Outcomes of patients with prostate cancer receiving zoledronic acid or pamidronate for prevention of skeletal-related events. Pharmacotherapy 27:207–217. doi:10.1592/phco.27.2.207

    Article  PubMed  CAS  Google Scholar 

  89. Gordon DH (2005) Efficacy and safety of intravenous bisphosphonates for patients with breast cancer metastatic to bone: a review of randomized, double-blind, phase III trials. Clin Breast Cancer 6:125–131

    Article  PubMed  CAS  Google Scholar 

  90. Wardley A, Davidson N, Barrett-Lee P et al (2005) Zoledronic acid significantly improves pain scores and quality of life in breast cancer patients with bone metastases: a randomised, crossover study of community vs hospital bisphosphonate administration. Br J Cancer 92:1869–1876. doi:10.1038/sj.bjc.6602551

    Article  PubMed  CAS  Google Scholar 

  91. Wong R, Wiffen PJ (2002) Bisphosphonates for the relief of pain secondary to bone metastases. Cochrane Database Syst Rev 2:CD002068

    PubMed  Google Scholar 

  92. Hoff AO, Toth BB, Altundag K et al (2006) Osteonecrosis of the jaw in patients receiving intravenous bisphosphonate therapy. J Clin Oncol 24 (Abstract 8528)

  93. Diel IJ, Fogelman I, Al-Nawas B et al (2007) Pathophysiology, risk factors and management of bisphosphonate-associated osteonecrosis of the jaw: is there a diverse relationship of amino- and non-aminobisphosphonates? Crit Rev Oncol Hematol 64:198–207. doi:10.1016/j.critrevonc.2007.07.005

    Article  PubMed  Google Scholar 

  94. Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935. doi:10.1200/JCO.2005.06.091

    Article  PubMed  CAS  Google Scholar 

  95. Coleman R, Brown J, Terpos E et al (2008) Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev 34:629–639. doi:10.1016/j.ctrv.2008.05.001

    Article  PubMed  CAS  Google Scholar 

Download references

Financial disclosure/conflict of interest statement

The authors of this article has no commercial associations (e.g., consultancies, stock ownership, equity interests, patentlicensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article. All funding sources supporting the work and all institutional or corporate affiliations of the author are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Gligorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gligorov, J., Lotz, JP. Optimal treatment strategies in postmenopausal women with hormone-receptor-positive and HER2-negative metastatic breast cancer. Breast Cancer Res Treat 112 (Suppl 1), 53–66 (2008). https://doi.org/10.1007/s10549-008-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0232-x

Keywords

Navigation