Skip to main content

Advertisement

Log in

NF-κB pathway inhibitors preferentially inhibit breast cancer stem-like cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that breast cancer is caused by cancer stem cells and cure of breast cancer requires eradication of breast cancer stem cells. Previous studies with leukemia stem cells have shown that NF-κB pathway is important for leukemia stem cell survival. In this study, by using MCF7 sphere cells as model of breast cancer stem-like cells, we evaluated the effect of NF-κB pathway specific inhibitors on human breast cancer MCF7 sphere cells. Three inhibitors including parthenolide (PTL), pyrrolidinedithiocarbamate (PDTC) and its analog diethyldithiocarbamate (DETC) were found to preferentially inhibit MCF7 sphere cell proliferation. These compounds also showed preferential inhibition in term of proliferation and colony formation on MCF7 side population (SP) cells, a small fraction of MCF7 cells known to enrich in breast cancer stem-like cells. The preferential inhibition effect of these compounds was due to inhibition of the NF-κB activity in both MCF7 sphere and MCF7 cells, with higher inhibition effect on MCF7 sphere cells than on MCF7 cells. PDTC was further evaluated in vivo and showed significant tumor growth inhibition alone but had better tumor growth inhibition in combination with paclitaxel in the mouse xenograft model than either PDTC or paclitaxel alone. This study suggests that breast cancer stem-like cells could be selectively inhibited by targeting signaling pathways important for breast cancer stem-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTL:

Parthenolide

PDTC:

Pyrrolidinedithiocarbamate

DETC:

Diethyldithiocarbamate

SP:

Side population

ABC:

ATP-binding cassette

References

  1. Howe HL, Wingo PA, Thun MJ, Ries LA, Rosenberg HM, Feigal EG, Edwards BK (2001) Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93:824–842

    Article  PubMed  CAS  Google Scholar 

  2. Peto R, Boreham J, Clarke M, Davies C, Beral V (2000) UK and USA breast cancer deaths down 25% in year 2000 at ages 20–69 years. Lancet 355:1822

    Article  PubMed  CAS  Google Scholar 

  3. EBCT (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 352:930–942

    Article  Google Scholar 

  4. EBCT (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 351:1451–1467

    Article  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47

    Article  PubMed  CAS  Google Scholar 

  7. Jones RJ, Matsui WH, Smith BD (2004) Cancer stem cells: are we missing the target? J Natl Cancer Inst 96:583–585

    PubMed  Google Scholar 

  8. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  9. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877

    Article  PubMed  CAS  Google Scholar 

  10. Guzman ML, Jordan CT (2004) Considerations for targeting malignant stem cells in leukemia. Cancer Control 11:97–104

    PubMed  Google Scholar 

  11. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D (2000) Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403–4411

    PubMed  CAS  Google Scholar 

  12. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    Article  PubMed  CAS  Google Scholar 

  13. Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL, Griffin CA, Smith BD, Jones RJ (2005) Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol 130:373–381

    Article  PubMed  CAS  Google Scholar 

  14. Behbod F, Rosen JM (2005) Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26:703–711

    Article  PubMed  CAS  Google Scholar 

  15. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  16. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  17. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786

    Article  PubMed  CAS  Google Scholar 

  18. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  PubMed  CAS  Google Scholar 

  19. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  PubMed  CAS  Google Scholar 

  20. Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK (2005) A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–205

    PubMed  CAS  Google Scholar 

  21. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  22. Jonker JW, Freeman J, Bolscher E, Musters S, Alvi AJ, Titley I, Schinkel AH, Dale TC (2005) Contribution of the ABC-transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23:1059–1065

    Article  PubMed  CAS  Google Scholar 

  23. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  24. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  25. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    Article  PubMed  CAS  Google Scholar 

  26. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT, Liesveld JL, Phillips GL, Swiderski CF, Grimes BA, Szilvassy SJ, Neering SJ, Upchurch D, Grimes B, Rizzieri DA, Luger SM, Lemischka IR, Pettigrew AL, Meyerrose T, Rossi R, Phillips GL (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 16:708–712

    Google Scholar 

  27. Malaguarnera L, Pilastro MR, DiMarco R, Scifo C, Renis M, Mazzarino MC, Messina A (2003) Cell death in human acute myelogenous leukemic cells induced by pyrrolidinedithiocarbamate. Apoptosis 8:539–545

    Article  PubMed  CAS  Google Scholar 

  28. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  29. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  30. Kasukabe T, Okabe-Kado J, Kato N, Sassa T, Honma Y (2005) Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts. Breast Cancer Res 7:R1097–R1110

    Article  PubMed  CAS  Google Scholar 

  31. Hardman WE, Moyer MP, Cameron IL (1999) Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects. Br J Cancer 81:440–448

    Article  PubMed  CAS  Google Scholar 

  32. Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270:24995–25000

    Article  PubMed  CAS  Google Scholar 

  33. Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175:1181–1194

    Article  PubMed  CAS  Google Scholar 

  34. Hill WD, Hess DC, Carroll JE, Wakade CG, Howard EF, Chen Q, Cheng C, Martin-Studdard A, Waller JL, Beswick RA (2001) The NF-kappaB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Res Bull 55:375–386

    Article  PubMed  CAS  Google Scholar 

  35. Musonda CA, Chipman JK (1998) Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19:1583–1589

    Article  PubMed  CAS  Google Scholar 

  36. WeberCK, Liptay S, Wirth T, Adler G, Schmid RM (2000) Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta. Gastroenterology 119:1209–1218

    Article  Google Scholar 

  37. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB (1999) Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274:27307–27314

    Article  PubMed  CAS  Google Scholar 

  38. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD, Rosenzweig KE, Youmell MB (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Oncogene 18:7389–7394

    Article  PubMed  CAS  Google Scholar 

  39. Hehner SP, Heinrich M, Bork PM, Vogt M, Ratter F, Lehmann V, Schulze-Osthoff K, Droge W, Schmitz ML (1998) Sesquiterpene lactones specifically inhibit activation of NF-kappa B by preventing the degradation of I kappa B-alpha and I kappa B-beta. J Biol Chem 273:1288–1297

    Article  PubMed  CAS  Google Scholar 

  40. Meriin AB, Gabai VL, Yaglom J, Shifrin VI, Sherman MY (1998) Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J Biol Chem 273:6373–6379

    Article  PubMed  CAS  Google Scholar 

  41. Meyer S, Kohler NG, Joly A (1997) Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett 413:354–358

    Article  PubMed  CAS  Google Scholar 

  42. Natarajan K, Manna SK, Chaturvedi MM, Aggarwal BB (1998) Protein tyrosine kinase inhibitors block tumor necrosis factor-induced activation of nuclear factor-kappaB, degradation of IkappaBalpha, nuclear translocation of p65, and subsequent gene expression. Arch Biochem Biophys 352:59–70

    Article  PubMed  CAS  Google Scholar 

  43. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  44. Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M, Remacle J (2001) Development of a sensitive multi-well colorimetric assay for active NFkappaB. Nucleic Acids Res 29:E21

    Article  PubMed  CAS  Google Scholar 

  45. Weissman I (2005) Stem cell research: paths to cancer therapies and regenerative medicine. Jama 294:1359–1366

    Article  PubMed  CAS  Google Scholar 

  46. Bonnet D (2005) Cancer stem cells: AMLs show the way. Biochem Soc Trans 33:1531–1533

    Article  PubMed  CAS  Google Scholar 

  47. Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16:708–712

    Article  PubMed  CAS  Google Scholar 

  48. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  49. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12:296–300

    Article  PubMed  CAS  Google Scholar 

  50. Zhang M, Rosen JM (2006) Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev 16:60–64

    Article  PubMed  CAS  Google Scholar 

  51. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980

    Article  PubMed  CAS  Google Scholar 

  52. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    Article  PubMed  CAS  Google Scholar 

  53. Guzman ML, Jordan CT (2005) Feverfew: weeding out the root of leukaemia. Expert Opin Biol Ther 5:1147–1152

    Article  PubMed  CAS  Google Scholar 

  54. Hehner SP, Hofmann TG, Droge W, Schmitz ML (1999) The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 163:5617–5623

    PubMed  CAS  Google Scholar 

  55. Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 8:759–766

    Article  PubMed  CAS  Google Scholar 

  56. Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276:39713–39720

    Article  PubMed  CAS  Google Scholar 

  57. MacKenzie CJ, Paul A, Wilson S, de Martin R, Baker AH, Plevin R (2003) Enhancement of lipopolysaccharide-stimulated JNK activity in rat aortic smooth muscle cells by pharmacological and adenovirus-mediated inhibition of inhibitory kappa B kinase signalling. Br J Pharmacol 139:1041–1049

    Article  PubMed  CAS  Google Scholar 

  58. Peng Y, Power MR, Li B, Lin TJ (2005) Inhibition of IKK down-regulates antigen + IgE-induced TNF production by mast cells: a role for the IKK-IkappaB-NF-kappaB pathway in IgE-dependent mast cell activation. J Leukoc Biol 77:975–983

    Article  PubMed  CAS  Google Scholar 

  59. Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, Sheridan C, Campbell RA, Murry DJ, Badve S, Nakshatri H (2005) The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 4:1004–1012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support from NIH grant AI44063, Ho Ching Yang Fellowship of Johns Hopkins Bloomberg School of Public Health, and the Johns Hopkins Center for AIDS Research, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Zhang, H., Gu, P. et al. NF-κB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111, 419–427 (2008). https://doi.org/10.1007/s10549-007-9798-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9798-y

Keywords

Navigation