Skip to main content

Advertisement

Log in

Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A), paclitaxel (T), and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer

  • Original Paper
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Objectives

This study evaluated the incidence of late cardiotoxicity after dose-dense and -intense adjuvant sequential doxorubicin (A), paclitaxel (T), and cyclophosphamide (C) for breast cancer (BC) with ≥ 4 involved ipsilateral axillary lymph nodes.

Methods

Patients were enrolled from 1994 to 2001 after definitive BC surgery if ≥4 axillary nodes were involved. Planned treatment was A 90 mg/m2 q 14 days × 3, T 250 mg/m2 q 14 days × 3, C 3 g/mq 14 days × 3 with filgrastim (G) support. Left ventricular ejection fraction (LVEF) was monitored using equilibrium radionuclide angiography (ERNA) before the initiation of chemotherapy, and after three cycles of each chemotherapeutic agent. At a median follow-up of 7 years, we obtained ERNA scans on 32 patients to evaluate the long-term cardiotoxicity of this regimen.

Results

Eighty-five eligible patients enrolled on the treatment protocol. Clinical heart failure developed in one patient. Seven (8%) patients had LVEF < 50% at the end of therapy. No cardiac-related deaths occurred. Thirty-two (46%) of 69 surviving patients have consented to late cardiac imaging. At a median follow-up of 7 years, the median absolute change in LVEF from baseline was -5.5%; [range (−8%) to (+36%)], and from the end of chemotherapy was −2.0%; [range (−25%) to (+16%)]. Four patients (12%) had a LVEF < 50%; two of these four patients had an LVEF of < 50% at the end of chemotherapy.

Conclusions

Late development of asymptomatic decline in cardiac function may occur after dose-dense and -intense adjuvant therapy, but is uncommon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lefrak EA, Pitha J, Rosenheim S et al (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  PubMed  CAS  Google Scholar 

  2. Von Hoff DD, Maxwell WL, Basa P et al (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Google Scholar 

  3. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879

    Article  PubMed  CAS  Google Scholar 

  4. Grenier MA, Lipshultz SE (1998) Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 25(Suppl. 10):72–85

    PubMed  CAS  Google Scholar 

  5. Botti C, Vici P, Lopez M, Scinto AF, Cognetti F, Cavaliere R (1995) Prognostic value of lymph node metastasis after neoadjuvant chemotherapy for large sized operable cancer of the breast. J Am Coll Surg 181:202–208

    PubMed  CAS  Google Scholar 

  6. Bonadonna G, Valagussa P (1984) Contribution of prognostic factors of adjuvant chemotherapy in breast cancer. Recent Results Cancer Res 96:34–45

    PubMed  CAS  Google Scholar 

  7. Haq MM, Legha SS, Choksi J (1985) Doxorubicin-induced congestive heart failure in adults. Cancer 56(6):1361–1365

    Article  PubMed  CAS  Google Scholar 

  8. Leandro J, Dyck J, Poppe D (1994) Cardiac dysfunction late after cardiotoxic therapy for childhood cancer. Am J Cardiol 74:1152–1156

    Article  PubMed  CAS  Google Scholar 

  9. Jakacki R, Silber J, Larsen R et al (1991) Cardiac dysfunction following a “low risk” cardiotoxic treatment for childhood malignancy [Abstract]. Pediatr Res 29:143A

    Google Scholar 

  10. Lamonte CS, Yeh SD, Straus DJ (1986) Long term follow up of cardiac function in patients with Hodgkin’s disease treated with mediastinal irradiation and combination chemotherapy including doxorubicin. Cancer Treat Rep 70:439–444

    PubMed  CAS  Google Scholar 

  11. Green DM, Grigoriev YA, Nan B et al (2001) Congestive heart failure after treatment for Wilms’ tumor: a report from the National Wilms’. J Clin Oncol 19(7):1926–1934

    PubMed  CAS  Google Scholar 

  12. Lipshultz SE, Lipsitz SR, Mone SM et al (1995) Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 332:1738–1743

    Article  PubMed  CAS  Google Scholar 

  13. Silber JH, Jakacki RI, Larsen RL et al (1993) Increased risk of cardiac dysfunction after anthracyclines in girls. Med Pediatr Oncol 21:477–479

    Article  PubMed  CAS  Google Scholar 

  14. BuLock FA, Marin RP, Mott MG (1995) Increased risk of cardiac dysfunction after anthracyclines in girls [letter]. Med Pediatr Oncol 24:143–144

    Article  CAS  Google Scholar 

  15. Shek TW, Luk IS, Ma L et al (1996) Paclitaxel-induced cardiotoxicity. An ultrastructural study. Arch Pathol Lab Med 120(1):89–91

    PubMed  CAS  Google Scholar 

  16. Sparano JA (1998) Use of dexrazoxane and other strategies to prevent cardiomyopathy associated with doxorubicin–taxane combinations. Semin Oncol 25(4 Suppl. 10):66–71

    PubMed  CAS  Google Scholar 

  17. Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 42(5):781–795

    PubMed  CAS  Google Scholar 

  18. Dunphy FR, Spitzer G, Buzdar AU et al (1990) Treatment of estrogen receptor-negative or hormonally refractory breast cancer with double high-dose chemotherapy intensification and bone marrow support. J Clin Oncol 8:1207–1216

    PubMed  CAS  Google Scholar 

  19. Jones RB, Shpall EJ, Shogan J et al (1990) The Duke AFM program. Intense induction chemotherapy for metastatic breast cancer. Cancer 66:431–436

    Article  PubMed  CAS  Google Scholar 

  20. Peters WP, Ross M, Vredengurgh JJ et al (1993) High-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high risk primary breast cancer. J Clin Oncol 11:1132–1143

    PubMed  CAS  Google Scholar 

  21. Antman K, Ayash L, Elias A et al (1992) A phase II study of high dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard dose therapy. J Clin Oncol 10:102–110

    PubMed  CAS  Google Scholar 

  22. Budman DR, Berry DA, Cirrincione CT et al (1998) Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer Inst 90:1205–1211

    Article  PubMed  CAS  Google Scholar 

  23. Bou-Khalil J, Rose M, Psyrri A (2003) Sequential high-dose alkylating therapy and stem cell support for high-risk stage III breast cancer. Breast J 9(6):472–477

    Article  PubMed  Google Scholar 

  24. Alexander J, Dainiak N, Berger HJ et al (1979) Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 300:278–283

    Article  PubMed  CAS  Google Scholar 

  25. Piver MS, Marchetti DL, Parthasarathy KL et al (1985) Doxorubicin hydrochloride (Adriamycin) cardiotoxicity evaluated by sequential radionuclide angiocardiography. Cancer 56:76–80

    Article  PubMed  CAS  Google Scholar 

  26. Ritchie JL, Singer JW, Thorning D et al (1980) Anthracycline cardiotoxicity: clinical and pathologic outcomes assessed by radionuclide ejection fraction. Cancer 46:1109–1116

    Article  PubMed  CAS  Google Scholar 

  27. Van Royen N, Jaffe CC, Krumholz HM et al (1996) Comparison and reproducibility of visual echocardiographic and quantitative radionucleotide left ventricular ejection fractions. Am J Cardiol 77:845–850

    Google Scholar 

  28. Schwartz RG, McKenzie WB, Alexander J et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  PubMed  CAS  Google Scholar 

  29. Abu-Khalaf MM, Windsor S, Ebisu K et al (2005) Five-year update of an expanded phase II study of dose-dense and -intense doxorubicin, paclitaxel and cyclophosphamide (ATC) in high-risk breast cancer. Oncology 69(5):372–383

    Article  PubMed  CAS  Google Scholar 

  30. Lipshultz SE, Colan SD (1993) The use of echocardiography and Holter monitoring in the assessment of anthracycline-treated patients. In: Bricker JT, Green DM, DiAngeo G (eds) Long term complications of treatment of children and adolescents for cancer. Wiley-Liss, Philadelphia, pp. 45–62

    Google Scholar 

  31. Hudis C, Riccio L, Seidman A et al (1998) Lack of increased cardiac toxicity with sequential doxorubicin and paclitaxel. Cancer Invest 16(2):67–71

    PubMed  CAS  Google Scholar 

  32. Shapiro CL, Hardenbergh PH, Gelman R (1998) Cardiac effects of adjuvant doxorubicin and radiation therapy in breast cancer patients. J Clin Oncol 16(11):3493–3501

    PubMed  CAS  Google Scholar 

  33. Bonneterre J, Roche H, Kerbrat P (2004) Long-term cardiac follow-up in relapse-free patients after six courses of fluorouracil, epirubicin, and cyclophosphamide, with either 50 or 100 mg of epirubicin, as adjuvant therapy for node-positive breast cancer: French Adjuvant Study Group. J Clin Oncol 22(15):3070–3079

    Article  PubMed  CAS  Google Scholar 

  34. Fumoleau P, Roche H, Kerbrat P et al (2006) Long-term cardiac toxicity after adjuvant epirubicin-based chemotherapy in early breast cancer: French Adjuvant Study Group results. Ann Oncol 17(1):85–92

    Article  PubMed  CAS  Google Scholar 

  35. Chacon R, Galvez C, Romero Acuna L et al (1992) A clinical analysis of cardiac toxicity and other life-threatening toxicities in patients receiving anthracyclines as adjuvant treatment in breast cancer: Pronacam Cooperative Group. Proc Am Soc Clin Oncol 11 (abstract 111)

  36. Basser RL, Abraham R, Bik To L et al (1999) Cardiac effects of high-dose epirubicin and cyclophosphamide in women with poor prognosis breast cancer. Ann Oncol 10:53–58

    Article  PubMed  CAS  Google Scholar 

  37. Levine MN, Pritchard KI, Bramwell VHC et al (2002) A randomized trial comparing CEF to CMF in premenopausal women with node-positive breast cancer: update of NCIC CTG MA 5. Breast Cancer Res Treat 76(abstract 17, Suppl. 1):533

    Google Scholar 

  38. Piccart MJ, Di Leo A, Beauduin M et al (2001) Phase III trial comparing two dose levels of epirubicin combined with cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer. J Clin Oncol 19:3103–3110

    PubMed  CAS  Google Scholar 

  39. Wils JA, Bliss JM, Coombes MG et al (1999) Epirubicin plus tamoxifen versus tamoxifen alone in node-positive postmenopausal patients with breast cancer: a randomized trial of the International Collaborative Cancer Group. J Clin Oncol 17:1988–1998

    PubMed  CAS  Google Scholar 

  40. Lipshultz SE, Colan SD, Gelber RD et al (1991) Late cardiac effects of doxorubicin in childhood lymphoblastic leukemia. N Engl J Med 324:808–815

    Article  PubMed  CAS  Google Scholar 

  41. Poutanen T, Tikanoja T, Riiknen P et al (2003) Long term prospective follow up study of cardiac function after cardiotoxic therapy for malignancy in children. J Clin Oncol 2(12):2349–2356

    Article  CAS  Google Scholar 

  42. Steinherz L, Steinherz P, Tan C et al (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J Am Med Assoc 266(12):1672–1677

    Article  CAS  Google Scholar 

  43. Pein F, Sakiroglu O, Dahan M et al (2004) Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J Cancer 91(1):37–44

    Article  PubMed  CAS  Google Scholar 

  44. Saad SY, Najjar TA, Alashari M (2004) Cardiotoxicity of doxorubicin/paclitaxel combination in rats: effect of sequence and timing of administration. J Biochem Mol Toxicol 18(2):78–86

    Article  PubMed  CAS  Google Scholar 

  45. Magne N, Largillier R, Marcy PY et al (2005) Cardiac toxicity assessment in locally advanced breast cancer treated neoadjuvantly with doxorubicin/paclitaxel regimen. Support Care Cancer 13(10):819–825

    Article  PubMed  Google Scholar 

  46. Gianni L, Dombernowsky P, Sledge G et al (2001) Cardiac function following combination therapy with paclitaxel and doxorubicin: an analysis of 657 women with advanced breast cancer. Ann Oncol 12(8):1067–1073

    Article  PubMed  CAS  Google Scholar 

  47. Morandi1 P, Ruffini PA, Benvenuto GM (2005) Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant 35:323–334

    Article  CAS  Google Scholar 

  48. Morandi P, Ruffini PA, Benvenuto GM et al (2001) Serum cardiac troponin I levels and ECG/Echo monitoring in breast cancer patients undergoing high-dose (7 g/m(2)) cyclophosphamide. Bone Marrow Transplant 28:277–282

    Article  PubMed  CAS  Google Scholar 

  49. Ayash LJ, Wright JE, Tretyakov O et al (1992) Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 10:995–1000

    PubMed  CAS  Google Scholar 

  50. Braverman AC, Antin JH, Plappert MT et al (1991) Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol 9:1215–1223

    PubMed  CAS  Google Scholar 

  51. Petros WP, Broadwater G, Berry D et al (2002) Association of highdose cyclophosphamide, cisplatin, and carmustine pharmacokinetics with survival, toxicity, and dosing weight in patients with primary breast cancer. Clin Cancer Res 8:698–705

    PubMed  CAS  Google Scholar 

  52. Bearman SI, Petersen FB, Schor RA et al (1990) Radionuclide ejection fractions in the evaluation of patients being considered for bone marrow transplantation: risk for cardiac toxicity. Bone Marrow Transplant 5:173–177

    PubMed  CAS  Google Scholar 

  53. Fujimaki K, Maruta A, Yoshida M et al (2001) Severe cardiac toxicity in hematological stem cell transplantation: predictive value of reduced left ventricular ejection fraction. Bone Marrow Transplant 27:307–310

    Article  PubMed  CAS  Google Scholar 

  54. Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 42:781–795

    Article  PubMed  CAS  Google Scholar 

  55. Lehmann S, Isberg B, Ljungman P, Paul C (2000) Cardiac systolic function before and after hematopoietic stem cell transplantation. Bone Marrow Transplant 26:187–192

    Article  PubMed  CAS  Google Scholar 

  56. Goldberg MA, Antin JH, Guinan EC et al (1986) Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood 68(5):1114–1118

    PubMed  CAS  Google Scholar 

  57. Gottdiener JS, Appelbaum FR, Ferrans VJ et al (1981) Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 141(6):758–763

    Article  PubMed  CAS  Google Scholar 

  58. Tiersten A, Wob J, Jacobson C et al (2004) Cardiac toxicity observed in association with high-dose cyclophosphamide-based chemotherapy for metastatic breast cancer. Breast 13:341–346

    Article  PubMed  Google Scholar 

  59. Cazin B, Gorin N, Laporte J et al (1986) Cardiac complications after bone marrow transplantation. Cancer 10:2061–2069

    Article  Google Scholar 

  60. Ayash L, Wright J, Tretyakov O et al (1992) Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 10:995–1000

    PubMed  CAS  Google Scholar 

  61. Bearman S, Petersen F, Schor R et al (1990) Radionuclide ejection fractions in the evaluation of patients being considered for bone marrow transplantation: risk for cardiac toxicity. Bone Marrow Transplant 5:173–177

    PubMed  CAS  Google Scholar 

  62. Marks LB, Yu X, Prosnitz RG et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63:214–233

    Article  PubMed  Google Scholar 

  63. Das SK, Bell M, Marks LB et al (2004) A preliminary study of the role of modulated electron beams in intensity modulated radiotherapy, using automated beam orientation and modality selection. Int J Radiat Oncol Biol Phys 59:602–617

    Article  PubMed  Google Scholar 

  64. Deigert F, Gunn W, Lindemann F et al (1995) A blended beam technique to decrease toxic effects of post mastectomy irradiation by combining and sequentially mixing electrons and photons. Med Dosim 20:183–190

    Article  PubMed  CAS  Google Scholar 

  65. Landau D, Adams EJ, Webb S et al (2000) Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy. Radiother Oncol 60:247–255

    Article  Google Scholar 

  66. Remouchamps VM, Vicini FA, Sharpe MB et al (2003) Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 55:392–406

    Article  PubMed  Google Scholar 

  67. Pihkala J, Saarinen UM, Lundstrom U et al (1996) Myocardial function in children and adolescents after therapy with anthracyclines and chest irradiation. Eur J Cancer 32A:97–103

    Article  PubMed  CAS  Google Scholar 

  68. Hancock SL, Tucker MA, Hopp RT et al (1993) Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. J Am Med Assoc 270:1949–1955

    Article  CAS  Google Scholar 

  69. Haybittle JL, Brinkley D, Houghton D et al (1989) Postoperative radiotherapy and late mortality: evidence from the Cancer Research Campaign trial for early breast cancer. Br Med J 298:1611–1614

    Article  CAS  Google Scholar 

  70. Host H, Brenhovd IO, Loeb M (1986) Postoperative radiotherapy in breast cancer—long term results from the Oslo study. Int J Radiat Oncol Biol Phys 12:727–732

    PubMed  CAS  Google Scholar 

  71. Jones JM, Ribeiro GG (1989) Mortality patterns over 34 years of breast cancer patients in a clinical trial of post-operative radiotherapy. Clin Radiol 40:204–208

    Article  PubMed  CAS  Google Scholar 

  72. Valagussa P, Zambetti M, Biasi S et al (1994) Cardiac effects following adjuvant chemotherapy and breast irradiation in operable breast cancer. Ann Oncol 5:209–216

    PubMed  CAS  Google Scholar 

  73. Sorensen K, Levitt GA, Bull C et al (2003) Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer 97(8):1991–1998

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysa M. Abu-Khalaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Khalaf, M.M., Juneja, V., Chung, G.G. et al. Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A), paclitaxel (T), and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer. Breast Cancer Res Treat 104, 341–349 (2007). https://doi.org/10.1007/s10549-006-9413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9413-7

Keywords

Navigation