Skip to main content

Advertisement

Log in

Gene expression profiling of breast cancer cells in response to gemcitabine: NF-κB pathway activation as a potential mechanism of resistance

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Gemcitabine is a nucleoside analog with clinical relevance in the treatment of several solid tumors, including breast carcinoma. In spite of its cytotoxic effect, clinical efficacy is impaired by the development of resistance. We performed gene expression analysis to shed light into the molecular mechanism of action of this drug in two breast cancer cell lines. Activation of genes related with cell cycle, cell growth and apoptosis (BNIP3L, CCNG2, DDIT4, TGFB2, TP53BP1, TP53INP1, and VEGF) was the main finding in the p53-wild type cell line MCF7, while the p53-non-functional cell line MDA-MB-231 was characterized by the regulation of NF-κB target genes (BIRC3, CXCL1/GRO1, IRAK2, TNF, TNFAIP and TRAF1). Genes consistently induced (ATF3, CCNG2, CDKN1A, EGR1, INSIG1, and MAF) or repressed (CCND1 and VGF) in both cell lines, were also found after gemcitabine treatment. In addition, MDA-MB-231 cells showed a higher basal and induced NF-κB transcriptional activity after treatment with gemcitabine. In comparison with gemcitabine, gene expression after 5-fluorouracil treatment showed essentially different profiles in both cell lines. This, in spite of using equitoxic concentrations producing similar effects on cell cycle. NF-κB transcriptional activity in MDA-MB-231 cells was dependent on IκB-alpha phosphorylation, as shown by functional experiments using the specific inhibitor BAY11-7082. Moreover, immunohistochemical analysis of clinical samples of breast carcinoma further validated the induction of NF-κB expression and IκB down-regulation upon neoadjuvant gemcitabine treatment. Thus, gene expression patterns, in vitro functional studies and analysis of tissue samples are in agreement with a role for NF-κB pathway in gemcitabine response. Together with the reported role for NF-κB in the induction of resistance to chemotherapy, our data gives support to clinical strategies combining gemcitabine with NF-κB inhibitors in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramalingam S, Belani CP (2004) State-of-the-art chemotherapy for advanced non-small cell lung cancer. Semin Oncol 31:68–74

    Article  PubMed  CAS  Google Scholar 

  2. Hussain SA, James ND (2003) The systemic treatment of advanced and metastatic bladder cancer. Lancet Oncol 4(8):489–497

    Article  PubMed  Google Scholar 

  3. Heinemann V (2002) Gemcitabine in the treatment of advanced pancreatic cancer: a comparative analysis of randomized trials. Semin Oncol 29(6):9–16

    Article  PubMed  CAS  Google Scholar 

  4. Burris H 3rd, Moore M, Andersen J, Green M, Rothenberg M, Modiano M, Cripps M, Portenoy R, Storniolo A, Tarassoff P et al (1997) Improvements in survival and clinical benefit with gemcitabine as first- line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    PubMed  CAS  Google Scholar 

  5. Heinemann V (2005) Gemcitabine in metastatic breast cancer. Exp Rev Anticancer Ther 5(3):429–443

    Article  CAS  Google Scholar 

  6. Plunkett W, Huang P, Searcy C, Gandhi V (1996) Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol 23(5 Suppl 10):3–15

    PubMed  CAS  Google Scholar 

  7. Bergman AM, Eijk PP, Ruiz van Haperen VWT, Smid K, Veerman G, Hubeek I, van den IJssel P, Ylstra B, Peters GJ (2005) In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res 65(20):9510–9516

    Article  PubMed  CAS  Google Scholar 

  8. Shi Z, Azuma A, Sampath D, Li Y-X, Huang P, Plunkett W (2001) S-phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res 61(3):1065–1072

    PubMed  CAS  Google Scholar 

  9. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 16(1):225–260

    Article  CAS  Google Scholar 

  10. Dong G, Chen Z, Kato T, Van Waes C (1999) The host environment promotes the constitutive activation of nuclear Factor-{{kappa}}B and proinflammatory cytokine expression during metastatic tumor progression of murine squamous cell carcinoma. Cancer Res 59(14):3495–3504

    PubMed  CAS  Google Scholar 

  11. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C et al (1997) Constitutive nuclear factor-kappa B-RelA activation is required for proliferation and survival␣of Hodgkin’s disease tumor cells. J Clin Invest 100(12):2961–2969

    Article  PubMed  CAS  Google Scholar 

  12. Arlt A, Vorndamm J, Breitenbroich M, Folsch U, Kalthoff H, Schmidt W, Schafer H (2001) Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 20(7):859–868

    Article  PubMed  CAS  Google Scholar 

  13. Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse M, Folsch U, Schafer H (2003) Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22(21):3243–3251

    Article  PubMed  CAS  Google Scholar 

  14. Biswas DK, Martin KJ, McAlister C, Cruz AP, Graner E, Dai S-c, Pardee AB (2003) Apoptosis caused by chemotherapeutic inhibition of nuclear factor-kappaB activation. Cancer Res 63(2):290–295

    PubMed  CAS  Google Scholar 

  15. Carmichael J, DeGraff W, Gazdar A, Minna J, Mitchell J (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47(4):936–942

    PubMed  CAS  Google Scholar 

  16. Moreno-Bueno G, Sanchez-Estevez C, Cassia R, Rodriguez-Perales S, Diaz-Uriarte R, Dominguez O, Hardisson D, Andujar M, Prat J, Matias-Guiu X et al (2003) Differential gene expression profile in endometrioid and nonendometrioid endometrial carcinoma: STK15 Is frequently overexpressed and amplified in nonendometrioid carcinomas. Cancer Res 63(18):5697–5702

    PubMed  CAS  Google Scholar 

  17. Hernández-Vargas H, Ballestar E, Carmona-Saez P, von Kobbe C, Bañón-Rodríguez I, Esteller M, Moreno-Bueno G, Palacios J (2006) Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: Relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer 119(5):1164–1175

    Article  PubMed  CAS  Google Scholar 

  18. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 Is Required for DNA Fragmentation and Morphological Changes Associated with Apoptosis. J Biol Chem 273(16):9357–9360

    Article  PubMed  CAS  Google Scholar 

  19. Allouache D, Gawande S, Tubiana-Hulin M, Tubiana- Mathieu N, Piperno-Neumann S, Mefti F, Bozec L, Genot J-Y (2005) First-line therapy with gemcitabine and paclitaxel in locally, recurrent or metastatic breast cancer: a phase II study. BMC Cancer 5(1):151

    Article  PubMed  CAS  Google Scholar 

  20. Pelegri A, Calvo L, Anton A, Mayordomo J, Florian J, Vasquez S, Arcusa A, Martin-Richard M, Bayo J, Carrasco E et al (2005) Docetaxel/gemcitabine administered every other week as first-line treatment for metastatic breast cancer: final results of a phase II trial. Clin Breast Cancer 6(5):433–438

    Article  PubMed  CAS  Google Scholar 

  21. Passardi A, Massa I, Zoli W, Gianni L, Milandri C, Zumaglini F, Nanni O, Maltoni R, Frassineti G, Amadori D (2006) Phase II study of gemcitabine, doxorubicin and paclitaxel (GAT) as first-line chemotherapy for metastatic breast cancer: a translational research experience. BMC Cancer 6(1):76

    Article  PubMed  CAS  Google Scholar 

  22. O’Shaughnessy J, Pluenneke R, Sternberg J, Khandelwal P, Ilegbodu D, Asmar L (2006) Phase II trial of weekly docetaxel/gemcitabine as first-line chemotherapy in patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer 6(6):505–510

    PubMed  CAS  Google Scholar 

  23. Tomao S, Romiti A, Tomao F, Di Seri M, Caprio G, Spinelli G, Terzoli E, Frati L (2006) A phase II trial of a biweekly combination of paclitaxel and gemcitabine in metastatic breast cancer. BMC Cancer 6(1):137

    Article  PubMed  CAS  Google Scholar 

  24. Loukinova E, Dong G, Enamorado-Ayalya I, Thomas G, Chen Z, Schreiber H, Van Waes C (2000) Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism. Oncogene 19(31):3477–3486

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ (1999) The nuclear factor-kappaB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5(1):119–127

    PubMed  CAS  Google Scholar 

  26. Steiner T, Junker U, Henzgen B, Nuske K, Durum S, Schubert J (2001) Interferon-alpha suppresses the antiapoptotic effect of NF-kB and sensitizes renal cell carcinoma cells in vitro to chemotherapeutic drugs. Eur Urol 39:478–483

    Article  PubMed  CAS  Google Scholar 

  27. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, Moldawer LL, Copeland I, Edward M, MacKay S (2001) Nuclear factor-[kappa]B is upregulated in colorectal cancer. Surgery 130(2):363–369

    Article  PubMed  CAS  Google Scholar 

  28. Bandala E, Espinosa M, Maldonado V, Melendez-Zajgla J (2001) Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem Pharmacol 62(1):13–19

    Article  PubMed  CAS  Google Scholar 

  29. Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Razelle K (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101(10):2351–2362

    Article  PubMed  CAS  Google Scholar 

  30. Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10(7):2299–2306

    Article  PubMed  CAS  Google Scholar 

  31. Jones DR, Broad RM, Madrid LV, BaldwinJr AS, Mayo MW (2000) Inhibition of NF-[kappa]B sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis. Ann Thorac Surg 70(3):930–936

    Article  PubMed  CAS  Google Scholar 

  32. Tabata M, Ganapathi R (2000) NF-{kappa}B activation in topoisomerase I inhibitor-induced apoptotic cell death in human non-small cell lung cancer. Ann NY Acad Sci 922(1):343–344

    Article  PubMed  CAS  Google Scholar 

  33. Bottero V, Busuttil V, Loubat A, Magne N, Fischel J-L, Milano G, Peyron J-F (2001) Activation of nuclear Factor {kappa}B through the IKK Complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res 61(21):7785–7791

    PubMed  CAS  Google Scholar 

  34. Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65(19):9064–9072

    Article  PubMed  CAS  Google Scholar 

  35. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9(17):6316–6325

    PubMed  CAS  Google Scholar 

  36. Sunwoo JB, Chen Z, Dong G, Yeh N, Bancroft CC, Sausville E, Adams J, Elliott P, Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear Factor-{{kappa}}B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7(5):1419–1428

    PubMed  CAS  Google Scholar 

  37. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear Factor-{{kappa}}B inhibition. Cancer Res 61(9):3535–3540

    PubMed  CAS  Google Scholar 

  38. Bold RJ, Virudachalam S, McConkey DJ (2001) Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res 100(1):11–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Educación y Ciencia, Grant Reference PTR1995-0753-OP and Ministerio de Ciencia y Tecnología SAF2001-0065 and SAF2004-08258-C02-01. GMB is junior investigator of the Ramón y Cajal Program 2004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Palacios or Gema Moreno-Bueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Vargas, H., Rodríguez-Pinilla, S.M., Julián-Tendero, M. et al. Gene expression profiling of breast cancer cells in response to gemcitabine: NF-κB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat 102, 157–172 (2007). https://doi.org/10.1007/s10549-006-9322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9322-9

Keywords

Navigation